| L(s) = 1 | + 2i·2-s + (−5.13 + 0.800i)3-s − 4·4-s + 5·5-s + (−1.60 − 10.2i)6-s + (5.52 + 17.6i)7-s − 8i·8-s + (25.7 − 8.21i)9-s + 10i·10-s + 11.6i·11-s + (20.5 − 3.20i)12-s + 81.5i·13-s + (−35.3 + 11.0i)14-s + (−25.6 + 4.00i)15-s + 16·16-s − 119.·17-s + ⋯ |
| L(s) = 1 | + 0.707i·2-s + (−0.988 + 0.154i)3-s − 0.5·4-s + 0.447·5-s + (−0.108 − 0.698i)6-s + (0.298 + 0.954i)7-s − 0.353i·8-s + (0.952 − 0.304i)9-s + 0.316i·10-s + 0.320i·11-s + (0.494 − 0.0770i)12-s + 1.73i·13-s + (−0.674 + 0.210i)14-s + (−0.441 + 0.0688i)15-s + 0.250·16-s − 1.71·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 210 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.897 + 0.441i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 210 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (-0.897 + 0.441i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(2)\) |
\(\approx\) |
\(0.135224 - 0.580745i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.135224 - 0.580745i\) |
| \(L(\frac{5}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 - 2iT \) |
| 3 | \( 1 + (5.13 - 0.800i)T \) |
| 5 | \( 1 - 5T \) |
| 7 | \( 1 + (-5.52 - 17.6i)T \) |
| good | 11 | \( 1 - 11.6iT - 1.33e3T^{2} \) |
| 13 | \( 1 - 81.5iT - 2.19e3T^{2} \) |
| 17 | \( 1 + 119.T + 4.91e3T^{2} \) |
| 19 | \( 1 + 93.3iT - 6.85e3T^{2} \) |
| 23 | \( 1 + 126. iT - 1.21e4T^{2} \) |
| 29 | \( 1 - 46.8iT - 2.43e4T^{2} \) |
| 31 | \( 1 - 71.3iT - 2.97e4T^{2} \) |
| 37 | \( 1 + 392.T + 5.06e4T^{2} \) |
| 41 | \( 1 + 410.T + 6.89e4T^{2} \) |
| 43 | \( 1 - 167.T + 7.95e4T^{2} \) |
| 47 | \( 1 - 13.6T + 1.03e5T^{2} \) |
| 53 | \( 1 - 369. iT - 1.48e5T^{2} \) |
| 59 | \( 1 + 194.T + 2.05e5T^{2} \) |
| 61 | \( 1 + 490. iT - 2.26e5T^{2} \) |
| 67 | \( 1 - 389.T + 3.00e5T^{2} \) |
| 71 | \( 1 - 174. iT - 3.57e5T^{2} \) |
| 73 | \( 1 - 488. iT - 3.89e5T^{2} \) |
| 79 | \( 1 + 1.25e3T + 4.93e5T^{2} \) |
| 83 | \( 1 - 814.T + 5.71e5T^{2} \) |
| 89 | \( 1 - 1.30e3T + 7.04e5T^{2} \) |
| 97 | \( 1 - 1.12e3iT - 9.12e5T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.39808337599587899129345085021, −11.54951647424427105590116775345, −10.60642096184145480194300054929, −9.247749842710836368070287888230, −8.772781232229358110828284360316, −6.84127940397328832741816430703, −6.52538515015433306964254210089, −5.12638958586181902918372165295, −4.45155965146495054346243052597, −1.99699555618688046857772165813,
0.28415294701461498369344529628, 1.68017825912046339493917676558, 3.62149004949785366940211487764, 4.94536523479389310590466191851, 5.92031644877787706067167448816, 7.22751346522496813921936748655, 8.364002051684554261204242007143, 9.908338149355885967907440616760, 10.53253156968508058737475036903, 11.20310690859944566539069954832