Properties

Degree 2
Conductor $ 2 \cdot 3 \cdot 5 \cdot 7 $
Sign $-0.710 - 0.704i$
Motivic weight 2
Primitive yes
Self-dual no
Analytic rank 0

Origins

Related objects

Downloads

Learn more about

Normalization:  

Dirichlet series

L(s)  = 1  + (−1.36 − 0.366i)2-s + (−1.67 + 0.448i)3-s + (1.73 + i)4-s + (−1.25 + 4.83i)5-s + 2.44·6-s + (5.72 − 4.03i)7-s + (−1.99 − 2i)8-s + (2.59 − 1.50i)9-s + (3.49 − 6.14i)10-s + (−5.44 + 9.42i)11-s + (−3.34 − 0.896i)12-s + (−4.13 − 4.13i)13-s + (−9.29 + 3.41i)14-s + (−0.0638 − 8.66i)15-s + (1.99 + 3.46i)16-s + (−0.489 − 1.82i)17-s + ⋯
L(s)  = 1  + (−0.683 − 0.183i)2-s + (−0.557 + 0.149i)3-s + (0.433 + 0.250i)4-s + (−0.251 + 0.967i)5-s + 0.408·6-s + (0.817 − 0.576i)7-s + (−0.249 − 0.250i)8-s + (0.288 − 0.166i)9-s + (0.349 − 0.614i)10-s + (−0.494 + 0.856i)11-s + (−0.278 − 0.0747i)12-s + (−0.318 − 0.318i)13-s + (−0.663 + 0.243i)14-s + (−0.00425 − 0.577i)15-s + (0.124 + 0.216i)16-s + (−0.0287 − 0.107i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 210 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.710 - 0.704i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 210 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (-0.710 - 0.704i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

\( d \)  =  \(2\)
\( N \)  =  \(210\)    =    \(2 \cdot 3 \cdot 5 \cdot 7\)
\( \varepsilon \)  =  $-0.710 - 0.704i$
motivic weight  =  \(2\)
character  :  $\chi_{210} (193, \cdot )$
primitive  :  yes
self-dual  :  no
analytic rank  =  \(0\)
Selberg data  =  \((2,\ 210,\ (\ :1),\ -0.710 - 0.704i)\)
\(L(\frac{3}{2})\)  \(\approx\)  \(0.183486 + 0.445682i\)
\(L(\frac12)\)  \(\approx\)  \(0.183486 + 0.445682i\)
\(L(2)\)   not available
\(L(1)\)   not available

Euler product

\[L(s) = \prod_{p \text{ prime}} F_p(p^{-s})^{-1} \]where, for $p \notin \{2,\;3,\;5,\;7\}$,\(F_p(T)\) is a polynomial of degree 2. If $p \in \{2,\;3,\;5,\;7\}$, then $F_p(T)$ is a polynomial of degree at most 1.
$p$$F_p(T)$
bad2 \( 1 + (1.36 + 0.366i)T \)
3 \( 1 + (1.67 - 0.448i)T \)
5 \( 1 + (1.25 - 4.83i)T \)
7 \( 1 + (-5.72 + 4.03i)T \)
good11 \( 1 + (5.44 - 9.42i)T + (-60.5 - 104. i)T^{2} \)
13 \( 1 + (4.13 + 4.13i)T + 169iT^{2} \)
17 \( 1 + (0.489 + 1.82i)T + (-250. + 144.5i)T^{2} \)
19 \( 1 + (27.1 - 15.6i)T + (180.5 - 312. i)T^{2} \)
23 \( 1 + (5.85 - 21.8i)T + (-458. - 264.5i)T^{2} \)
29 \( 1 - 35.4iT - 841T^{2} \)
31 \( 1 + (7.10 - 12.3i)T + (-480.5 - 832. i)T^{2} \)
37 \( 1 + (-13.4 - 3.60i)T + (1.18e3 + 684.5i)T^{2} \)
41 \( 1 + 75.8T + 1.68e3T^{2} \)
43 \( 1 + (5.54 + 5.54i)T + 1.84e3iT^{2} \)
47 \( 1 + (89.5 + 23.9i)T + (1.91e3 + 1.10e3i)T^{2} \)
53 \( 1 + (-73.5 + 19.6i)T + (2.43e3 - 1.40e3i)T^{2} \)
59 \( 1 + (-39.8 - 22.9i)T + (1.74e3 + 3.01e3i)T^{2} \)
61 \( 1 + (-46.7 - 80.8i)T + (-1.86e3 + 3.22e3i)T^{2} \)
67 \( 1 + (6.47 + 24.1i)T + (-3.88e3 + 2.24e3i)T^{2} \)
71 \( 1 - 4.10T + 5.04e3T^{2} \)
73 \( 1 + (-94.5 + 25.3i)T + (4.61e3 - 2.66e3i)T^{2} \)
79 \( 1 + (-25.8 + 14.9i)T + (3.12e3 - 5.40e3i)T^{2} \)
83 \( 1 + (42.2 + 42.2i)T + 6.88e3iT^{2} \)
89 \( 1 + (-71.6 + 41.3i)T + (3.96e3 - 6.85e3i)T^{2} \)
97 \( 1 + (60.0 - 60.0i)T - 9.40e3iT^{2} \)
show more
show less
\[\begin{aligned}L(s) = \prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\end{aligned}\]

Imaginary part of the first few zeros on the critical line

−12.14101480940740019178317905073, −11.34118711787347606623355003985, −10.39594230993088967856028251692, −10.08949001651813688900756321297, −8.398000466120613908937145949078, −7.45283854383703956350936311060, −6.67424869308350305345351582778, −5.12294960957611749013609946323, −3.70331199448241574600702504152, −1.92188620600466867750849031218, 0.34628223369835469488790338967, 2.09977682576911866484330384556, 4.49870060241131833515333082480, 5.49644910826214341003396640640, 6.62189250856174654431245403315, 8.175566201568307102309115545797, 8.466050120427528862224252019622, 9.719059630896920821144108599336, 10.97963091500034513435485856453, 11.59281811381526970739662618161

Graph of the $Z$-function along the critical line