L(s) = 1 | + (0.258 − 0.965i)2-s + (0.680 − 1.59i)3-s + (−0.866 − 0.499i)4-s + (1.30 − 1.81i)5-s + (−1.36 − 1.06i)6-s + (−2.54 + 0.736i)7-s + (−0.707 + 0.707i)8-s + (−2.07 − 2.16i)9-s + (−1.41 − 1.73i)10-s + (1.83 + 1.05i)11-s + (−1.38 + 1.03i)12-s + (3.28 + 3.28i)13-s + (0.0535 + 2.64i)14-s + (−2.00 − 3.31i)15-s + (0.500 + 0.866i)16-s + (−1.40 + 0.375i)17-s + ⋯ |
L(s) = 1 | + (0.183 − 0.683i)2-s + (0.392 − 0.919i)3-s + (−0.433 − 0.249i)4-s + (0.583 − 0.812i)5-s + (−0.556 − 0.436i)6-s + (−0.960 + 0.278i)7-s + (−0.249 + 0.249i)8-s + (−0.691 − 0.722i)9-s + (−0.447 − 0.547i)10-s + (0.553 + 0.319i)11-s + (−0.399 + 0.300i)12-s + (0.910 + 0.910i)13-s + (0.0143 + 0.706i)14-s + (−0.517 − 0.855i)15-s + (0.125 + 0.216i)16-s + (−0.339 + 0.0910i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 210 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.544 + 0.838i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 210 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.544 + 0.838i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.678388 - 1.24939i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.678388 - 1.24939i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.258 + 0.965i)T \) |
| 3 | \( 1 + (-0.680 + 1.59i)T \) |
| 5 | \( 1 + (-1.30 + 1.81i)T \) |
| 7 | \( 1 + (2.54 - 0.736i)T \) |
good | 11 | \( 1 + (-1.83 - 1.05i)T + (5.5 + 9.52i)T^{2} \) |
| 13 | \( 1 + (-3.28 - 3.28i)T + 13iT^{2} \) |
| 17 | \( 1 + (1.40 - 0.375i)T + (14.7 - 8.5i)T^{2} \) |
| 19 | \( 1 + (-4.72 + 2.72i)T + (9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (5.50 + 1.47i)T + (19.9 + 11.5i)T^{2} \) |
| 29 | \( 1 - 7.20T + 29T^{2} \) |
| 31 | \( 1 + (0.528 - 0.914i)T + (-15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + (-6.22 - 1.66i)T + (32.0 + 18.5i)T^{2} \) |
| 41 | \( 1 - 1.86iT - 41T^{2} \) |
| 43 | \( 1 + (-1.79 - 1.79i)T + 43iT^{2} \) |
| 47 | \( 1 + (2.87 - 10.7i)T + (-40.7 - 23.5i)T^{2} \) |
| 53 | \( 1 + (1.73 + 6.47i)T + (-45.8 + 26.5i)T^{2} \) |
| 59 | \( 1 + (2.63 - 4.56i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (-4.11 - 7.13i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (2.43 + 9.10i)T + (-58.0 + 33.5i)T^{2} \) |
| 71 | \( 1 - 1.75iT - 71T^{2} \) |
| 73 | \( 1 + (1.20 - 0.323i)T + (63.2 - 36.5i)T^{2} \) |
| 79 | \( 1 + (13.8 - 7.99i)T + (39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + (9.47 - 9.47i)T - 83iT^{2} \) |
| 89 | \( 1 + (-0.199 - 0.346i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + (8.63 - 8.63i)T - 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.21016447124037630769287774452, −11.44829658658045874653451707703, −9.800895672142326572613507697377, −9.200152893184316433875254651589, −8.335013901418616631309255888469, −6.68475198919059474287025071019, −5.92234909971056374541356366078, −4.25955491416647513176334385804, −2.73999645696210048333910593634, −1.31648073778486934019502718281,
3.05389201278502411447998620170, 3.89514048619302731619017324415, 5.62520986265980991961831395881, 6.32973489281178667347769526696, 7.65571552067650673931094671198, 8.816672153479102429919897637845, 9.842364778970418673284290426298, 10.38103840819715642732026923246, 11.61539012154170066187532833431, 13.13552035410422884800518133858