Properties

Label 2-210-105.23-c1-0-5
Degree $2$
Conductor $210$
Sign $0.950 - 0.312i$
Analytic cond. $1.67685$
Root an. cond. $1.29493$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.965 − 0.258i)2-s + (−1.59 + 0.680i)3-s + (0.866 − 0.499i)4-s + (2.22 + 0.221i)5-s + (−1.36 + 1.06i)6-s + (−0.736 + 2.54i)7-s + (0.707 − 0.707i)8-s + (2.07 − 2.16i)9-s + (2.20 − 0.361i)10-s + (1.83 − 1.05i)11-s + (−1.03 + 1.38i)12-s + (3.28 + 3.28i)13-s + (−0.0535 + 2.64i)14-s + (−3.69 + 1.16i)15-s + (0.500 − 0.866i)16-s + (−0.375 + 1.40i)17-s + ⋯
L(s)  = 1  + (0.683 − 0.183i)2-s + (−0.919 + 0.392i)3-s + (0.433 − 0.249i)4-s + (0.995 + 0.0991i)5-s + (−0.556 + 0.436i)6-s + (−0.278 + 0.960i)7-s + (0.249 − 0.249i)8-s + (0.691 − 0.722i)9-s + (0.697 − 0.114i)10-s + (0.553 − 0.319i)11-s + (−0.300 + 0.399i)12-s + (0.910 + 0.910i)13-s + (−0.0143 + 0.706i)14-s + (−0.954 + 0.299i)15-s + (0.125 − 0.216i)16-s + (−0.0910 + 0.339i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 210 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.950 - 0.312i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 210 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.950 - 0.312i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(210\)    =    \(2 \cdot 3 \cdot 5 \cdot 7\)
Sign: $0.950 - 0.312i$
Analytic conductor: \(1.67685\)
Root analytic conductor: \(1.29493\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{210} (23, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 210,\ (\ :1/2),\ 0.950 - 0.312i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.53614 + 0.245890i\)
\(L(\frac12)\) \(\approx\) \(1.53614 + 0.245890i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (-0.965 + 0.258i)T \)
3 \( 1 + (1.59 - 0.680i)T \)
5 \( 1 + (-2.22 - 0.221i)T \)
7 \( 1 + (0.736 - 2.54i)T \)
good11 \( 1 + (-1.83 + 1.05i)T + (5.5 - 9.52i)T^{2} \)
13 \( 1 + (-3.28 - 3.28i)T + 13iT^{2} \)
17 \( 1 + (0.375 - 1.40i)T + (-14.7 - 8.5i)T^{2} \)
19 \( 1 + (4.72 + 2.72i)T + (9.5 + 16.4i)T^{2} \)
23 \( 1 + (1.47 + 5.50i)T + (-19.9 + 11.5i)T^{2} \)
29 \( 1 + 7.20T + 29T^{2} \)
31 \( 1 + (0.528 + 0.914i)T + (-15.5 + 26.8i)T^{2} \)
37 \( 1 + (1.66 + 6.22i)T + (-32.0 + 18.5i)T^{2} \)
41 \( 1 + 1.86iT - 41T^{2} \)
43 \( 1 + (-1.79 - 1.79i)T + 43iT^{2} \)
47 \( 1 + (10.7 - 2.87i)T + (40.7 - 23.5i)T^{2} \)
53 \( 1 + (6.47 + 1.73i)T + (45.8 + 26.5i)T^{2} \)
59 \( 1 + (-2.63 - 4.56i)T + (-29.5 + 51.0i)T^{2} \)
61 \( 1 + (-4.11 + 7.13i)T + (-30.5 - 52.8i)T^{2} \)
67 \( 1 + (-9.10 - 2.43i)T + (58.0 + 33.5i)T^{2} \)
71 \( 1 + 1.75iT - 71T^{2} \)
73 \( 1 + (-0.323 + 1.20i)T + (-63.2 - 36.5i)T^{2} \)
79 \( 1 + (-13.8 - 7.99i)T + (39.5 + 68.4i)T^{2} \)
83 \( 1 + (-9.47 + 9.47i)T - 83iT^{2} \)
89 \( 1 + (0.199 - 0.346i)T + (-44.5 - 77.0i)T^{2} \)
97 \( 1 + (8.63 - 8.63i)T - 97iT^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.52644545404187320801264641806, −11.36387055411982970468457578957, −10.81187946927328004511567503932, −9.576929883133049725934972418946, −8.823623214398829301858598012801, −6.48378991265429900128843047095, −6.26285860041505974481626212694, −5.12788748264270323778753612887, −3.84789908876560665300939953851, −2.01949545769651216089932090007, 1.59376619973209164415768085316, 3.74036523497421137127905303842, 5.11632974938620723811951277816, 6.10558226771734757920954007828, 6.80695919505432081055254857377, 7.997710330169763891425750408344, 9.690606855423198329115237543813, 10.56912750017310717950044194292, 11.38081505728796378637465425013, 12.63170845532967882834829848332

Graph of the $Z$-function along the critical line