L(s) = 1 | + (0.965 − 0.258i)2-s + (−1.59 + 0.680i)3-s + (0.866 − 0.499i)4-s + (2.22 + 0.221i)5-s + (−1.36 + 1.06i)6-s + (−0.736 + 2.54i)7-s + (0.707 − 0.707i)8-s + (2.07 − 2.16i)9-s + (2.20 − 0.361i)10-s + (1.83 − 1.05i)11-s + (−1.03 + 1.38i)12-s + (3.28 + 3.28i)13-s + (−0.0535 + 2.64i)14-s + (−3.69 + 1.16i)15-s + (0.500 − 0.866i)16-s + (−0.375 + 1.40i)17-s + ⋯ |
L(s) = 1 | + (0.683 − 0.183i)2-s + (−0.919 + 0.392i)3-s + (0.433 − 0.249i)4-s + (0.995 + 0.0991i)5-s + (−0.556 + 0.436i)6-s + (−0.278 + 0.960i)7-s + (0.249 − 0.249i)8-s + (0.691 − 0.722i)9-s + (0.697 − 0.114i)10-s + (0.553 − 0.319i)11-s + (−0.300 + 0.399i)12-s + (0.910 + 0.910i)13-s + (−0.0143 + 0.706i)14-s + (−0.954 + 0.299i)15-s + (0.125 − 0.216i)16-s + (−0.0910 + 0.339i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 210 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.950 - 0.312i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 210 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.950 - 0.312i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.53614 + 0.245890i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.53614 + 0.245890i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.965 + 0.258i)T \) |
| 3 | \( 1 + (1.59 - 0.680i)T \) |
| 5 | \( 1 + (-2.22 - 0.221i)T \) |
| 7 | \( 1 + (0.736 - 2.54i)T \) |
good | 11 | \( 1 + (-1.83 + 1.05i)T + (5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 + (-3.28 - 3.28i)T + 13iT^{2} \) |
| 17 | \( 1 + (0.375 - 1.40i)T + (-14.7 - 8.5i)T^{2} \) |
| 19 | \( 1 + (4.72 + 2.72i)T + (9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (1.47 + 5.50i)T + (-19.9 + 11.5i)T^{2} \) |
| 29 | \( 1 + 7.20T + 29T^{2} \) |
| 31 | \( 1 + (0.528 + 0.914i)T + (-15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + (1.66 + 6.22i)T + (-32.0 + 18.5i)T^{2} \) |
| 41 | \( 1 + 1.86iT - 41T^{2} \) |
| 43 | \( 1 + (-1.79 - 1.79i)T + 43iT^{2} \) |
| 47 | \( 1 + (10.7 - 2.87i)T + (40.7 - 23.5i)T^{2} \) |
| 53 | \( 1 + (6.47 + 1.73i)T + (45.8 + 26.5i)T^{2} \) |
| 59 | \( 1 + (-2.63 - 4.56i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (-4.11 + 7.13i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (-9.10 - 2.43i)T + (58.0 + 33.5i)T^{2} \) |
| 71 | \( 1 + 1.75iT - 71T^{2} \) |
| 73 | \( 1 + (-0.323 + 1.20i)T + (-63.2 - 36.5i)T^{2} \) |
| 79 | \( 1 + (-13.8 - 7.99i)T + (39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + (-9.47 + 9.47i)T - 83iT^{2} \) |
| 89 | \( 1 + (0.199 - 0.346i)T + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + (8.63 - 8.63i)T - 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.52644545404187320801264641806, −11.36387055411982970468457578957, −10.81187946927328004511567503932, −9.576929883133049725934972418946, −8.823623214398829301858598012801, −6.48378991265429900128843047095, −6.26285860041505974481626212694, −5.12788748264270323778753612887, −3.84789908876560665300939953851, −2.01949545769651216089932090007,
1.59376619973209164415768085316, 3.74036523497421137127905303842, 5.11632974938620723811951277816, 6.10558226771734757920954007828, 6.80695919505432081055254857377, 7.997710330169763891425750408344, 9.690606855423198329115237543813, 10.56912750017310717950044194292, 11.38081505728796378637465425013, 12.63170845532967882834829848332