L(s) = 1 | + (−0.965 − 0.258i)2-s + (1.03 − 1.38i)3-s + (0.866 + 0.499i)4-s + (−2.22 + 0.221i)5-s + (−1.36 + 1.06i)6-s + (−0.736 − 2.54i)7-s + (−0.707 − 0.707i)8-s + (−0.839 − 2.88i)9-s + (2.20 + 0.361i)10-s + (−1.83 − 1.05i)11-s + (1.59 − 0.680i)12-s + (3.28 − 3.28i)13-s + (0.0535 + 2.64i)14-s + (−2.00 + 3.31i)15-s + (0.500 + 0.866i)16-s + (0.375 + 1.40i)17-s + ⋯ |
L(s) = 1 | + (−0.683 − 0.183i)2-s + (0.600 − 0.799i)3-s + (0.433 + 0.249i)4-s + (−0.995 + 0.0991i)5-s + (−0.556 + 0.436i)6-s + (−0.278 − 0.960i)7-s + (−0.249 − 0.249i)8-s + (−0.279 − 0.960i)9-s + (0.697 + 0.114i)10-s + (−0.553 − 0.319i)11-s + (0.459 − 0.196i)12-s + (0.910 − 0.910i)13-s + (0.0143 + 0.706i)14-s + (−0.517 + 0.855i)15-s + (0.125 + 0.216i)16-s + (0.0910 + 0.339i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 210 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.529 + 0.848i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 210 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.529 + 0.848i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.378738 - 0.682485i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.378738 - 0.682485i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.965 + 0.258i)T \) |
| 3 | \( 1 + (-1.03 + 1.38i)T \) |
| 5 | \( 1 + (2.22 - 0.221i)T \) |
| 7 | \( 1 + (0.736 + 2.54i)T \) |
good | 11 | \( 1 + (1.83 + 1.05i)T + (5.5 + 9.52i)T^{2} \) |
| 13 | \( 1 + (-3.28 + 3.28i)T - 13iT^{2} \) |
| 17 | \( 1 + (-0.375 - 1.40i)T + (-14.7 + 8.5i)T^{2} \) |
| 19 | \( 1 + (4.72 - 2.72i)T + (9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (-1.47 + 5.50i)T + (-19.9 - 11.5i)T^{2} \) |
| 29 | \( 1 - 7.20T + 29T^{2} \) |
| 31 | \( 1 + (0.528 - 0.914i)T + (-15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + (1.66 - 6.22i)T + (-32.0 - 18.5i)T^{2} \) |
| 41 | \( 1 + 1.86iT - 41T^{2} \) |
| 43 | \( 1 + (-1.79 + 1.79i)T - 43iT^{2} \) |
| 47 | \( 1 + (-10.7 - 2.87i)T + (40.7 + 23.5i)T^{2} \) |
| 53 | \( 1 + (-6.47 + 1.73i)T + (45.8 - 26.5i)T^{2} \) |
| 59 | \( 1 + (2.63 - 4.56i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (-4.11 - 7.13i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (-9.10 + 2.43i)T + (58.0 - 33.5i)T^{2} \) |
| 71 | \( 1 + 1.75iT - 71T^{2} \) |
| 73 | \( 1 + (-0.323 - 1.20i)T + (-63.2 + 36.5i)T^{2} \) |
| 79 | \( 1 + (-13.8 + 7.99i)T + (39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + (9.47 + 9.47i)T + 83iT^{2} \) |
| 89 | \( 1 + (-0.199 - 0.346i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + (8.63 + 8.63i)T + 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.16662030764880380129020510525, −10.81854362307011017835469614766, −10.34328381988373472183451527080, −8.571059914494251060663998513582, −8.227432138849036525900648801370, −7.22412842192559053044201373121, −6.27785496277844690877276184489, −3.99990747272664498642701232991, −2.91004001335209157102247716658, −0.791329182639766842467388363543,
2.51882619374347087753587712552, 3.95389631460493766708881468455, 5.27204130054753272647600399096, 6.81192335164126539845139068410, 8.051960680585540522677328472826, 8.790208963878174665646753183373, 9.461482805623573197089569674848, 10.73859098924276832943398241318, 11.43998220476826582544187980001, 12.53840458280687664411751449987