Properties

Label 2-21-1.1-c7-0-5
Degree $2$
Conductor $21$
Sign $1$
Analytic cond. $6.56008$
Root an. cond. $2.56126$
Motivic weight $7$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 17.1·2-s + 27·3-s + 166.·4-s + 69.3·5-s + 463.·6-s + 343·7-s + 663.·8-s + 729·9-s + 1.19e3·10-s − 910.·11-s + 4.49e3·12-s − 8.35e3·13-s + 5.88e3·14-s + 1.87e3·15-s − 9.94e3·16-s + 2.04e4·17-s + 1.25e4·18-s − 4.01e3·19-s + 1.15e4·20-s + 9.26e3·21-s − 1.56e4·22-s − 8.48e4·23-s + 1.79e4·24-s − 7.33e4·25-s − 1.43e5·26-s + 1.96e4·27-s + 5.71e4·28-s + ⋯
L(s)  = 1  + 1.51·2-s + 0.577·3-s + 1.30·4-s + 0.248·5-s + 0.875·6-s + 0.377·7-s + 0.458·8-s + 0.333·9-s + 0.376·10-s − 0.206·11-s + 0.751·12-s − 1.05·13-s + 0.573·14-s + 0.143·15-s − 0.606·16-s + 1.01·17-s + 0.505·18-s − 0.134·19-s + 0.323·20-s + 0.218·21-s − 0.313·22-s − 1.45·23-s + 0.264·24-s − 0.938·25-s − 1.60·26-s + 0.192·27-s + 0.492·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 21 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(8-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 21 ^{s/2} \, \Gamma_{\C}(s+7/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(21\)    =    \(3 \cdot 7\)
Sign: $1$
Analytic conductor: \(6.56008\)
Root analytic conductor: \(2.56126\)
Motivic weight: \(7\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 21,\ (\ :7/2),\ 1)\)

Particular Values

\(L(4)\) \(\approx\) \(4.002466616\)
\(L(\frac12)\) \(\approx\) \(4.002466616\)
\(L(\frac{9}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 - 27T \)
7 \( 1 - 343T \)
good2 \( 1 - 17.1T + 128T^{2} \)
5 \( 1 - 69.3T + 7.81e4T^{2} \)
11 \( 1 + 910.T + 1.94e7T^{2} \)
13 \( 1 + 8.35e3T + 6.27e7T^{2} \)
17 \( 1 - 2.04e4T + 4.10e8T^{2} \)
19 \( 1 + 4.01e3T + 8.93e8T^{2} \)
23 \( 1 + 8.48e4T + 3.40e9T^{2} \)
29 \( 1 + 9.42e4T + 1.72e10T^{2} \)
31 \( 1 - 2.14e5T + 2.75e10T^{2} \)
37 \( 1 - 4.32e5T + 9.49e10T^{2} \)
41 \( 1 - 7.30e5T + 1.94e11T^{2} \)
43 \( 1 - 6.13e5T + 2.71e11T^{2} \)
47 \( 1 + 4.38e5T + 5.06e11T^{2} \)
53 \( 1 + 3.67e5T + 1.17e12T^{2} \)
59 \( 1 - 1.26e6T + 2.48e12T^{2} \)
61 \( 1 - 2.92e6T + 3.14e12T^{2} \)
67 \( 1 - 1.76e5T + 6.06e12T^{2} \)
71 \( 1 + 4.32e6T + 9.09e12T^{2} \)
73 \( 1 + 4.31e6T + 1.10e13T^{2} \)
79 \( 1 - 4.45e6T + 1.92e13T^{2} \)
83 \( 1 + 4.35e6T + 2.71e13T^{2} \)
89 \( 1 + 5.82e6T + 4.42e13T^{2} \)
97 \( 1 - 7.54e6T + 8.07e13T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−16.04889461414684691918806916828, −14.75153507942405915388675418582, −14.09877546473603991349555709370, −12.87094098339307939618146129844, −11.74138685894363142520133168536, −9.806187473939465656697441510307, −7.72276876112654559353729139660, −5.79806591580752762914344915807, −4.23131677541820408548172923622, −2.46838957608683795260208025584, 2.46838957608683795260208025584, 4.23131677541820408548172923622, 5.79806591580752762914344915807, 7.72276876112654559353729139660, 9.806187473939465656697441510307, 11.74138685894363142520133168536, 12.87094098339307939618146129844, 14.09877546473603991349555709370, 14.75153507942405915388675418582, 16.04889461414684691918806916828

Graph of the $Z$-function along the critical line