| L(s) = 1 | + (−0.5 − 0.866i)2-s + (1.5 + 0.866i)3-s + (1.5 − 2.59i)4-s + (−4.5 + 2.59i)5-s − 1.73i·6-s + (−3.5 + 6.06i)7-s − 7·8-s + (1.5 + 2.59i)9-s + (4.5 + 2.59i)10-s + (5.5 − 9.52i)11-s + (4.5 − 2.59i)12-s − 6.92i·13-s + 7·14-s − 9·15-s + (−2.5 − 4.33i)16-s + (21 + 12.1i)17-s + ⋯ |
| L(s) = 1 | + (−0.250 − 0.433i)2-s + (0.5 + 0.288i)3-s + (0.375 − 0.649i)4-s + (−0.900 + 0.519i)5-s − 0.288i·6-s + (−0.5 + 0.866i)7-s − 0.875·8-s + (0.166 + 0.288i)9-s + (0.450 + 0.259i)10-s + (0.5 − 0.866i)11-s + (0.375 − 0.216i)12-s − 0.532i·13-s + 0.5·14-s − 0.599·15-s + (−0.156 − 0.270i)16-s + (1.23 + 0.713i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 21 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.922 + 0.386i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 21 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.922 + 0.386i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{3}{2})\) |
\(\approx\) |
\(0.824806 - 0.165843i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.824806 - 0.165843i\) |
| \(L(2)\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 3 | \( 1 + (-1.5 - 0.866i)T \) |
| 7 | \( 1 + (3.5 - 6.06i)T \) |
| good | 2 | \( 1 + (0.5 + 0.866i)T + (-2 + 3.46i)T^{2} \) |
| 5 | \( 1 + (4.5 - 2.59i)T + (12.5 - 21.6i)T^{2} \) |
| 11 | \( 1 + (-5.5 + 9.52i)T + (-60.5 - 104. i)T^{2} \) |
| 13 | \( 1 + 6.92iT - 169T^{2} \) |
| 17 | \( 1 + (-21 - 12.1i)T + (144.5 + 250. i)T^{2} \) |
| 19 | \( 1 + (3 - 1.73i)T + (180.5 - 312. i)T^{2} \) |
| 23 | \( 1 + (14 + 24.2i)T + (-264.5 + 458. i)T^{2} \) |
| 29 | \( 1 - 25T + 841T^{2} \) |
| 31 | \( 1 + (28.5 + 16.4i)T + (480.5 + 832. i)T^{2} \) |
| 37 | \( 1 + (-29 - 50.2i)T + (-684.5 + 1.18e3i)T^{2} \) |
| 41 | \( 1 + 3.46iT - 1.68e3T^{2} \) |
| 43 | \( 1 - 26T + 1.84e3T^{2} \) |
| 47 | \( 1 + (66 - 38.1i)T + (1.10e3 - 1.91e3i)T^{2} \) |
| 53 | \( 1 + (15.5 - 26.8i)T + (-1.40e3 - 2.43e3i)T^{2} \) |
| 59 | \( 1 + (7.5 + 4.33i)T + (1.74e3 + 3.01e3i)T^{2} \) |
| 61 | \( 1 + (-12 + 6.92i)T + (1.86e3 - 3.22e3i)T^{2} \) |
| 67 | \( 1 + (-26 + 45.0i)T + (-2.24e3 - 3.88e3i)T^{2} \) |
| 71 | \( 1 - 64T + 5.04e3T^{2} \) |
| 73 | \( 1 + (-6 - 3.46i)T + (2.66e3 + 4.61e3i)T^{2} \) |
| 79 | \( 1 + (8.5 + 14.7i)T + (-3.12e3 + 5.40e3i)T^{2} \) |
| 83 | \( 1 + 53.6iT - 6.88e3T^{2} \) |
| 89 | \( 1 + (69 - 39.8i)T + (3.96e3 - 6.85e3i)T^{2} \) |
| 97 | \( 1 + 91.7iT - 9.40e3T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−18.57487378858281785048697742474, −16.32490042475320846356153975606, −15.25478531882660163329757668504, −14.46196494531299827678109479040, −12.34463758149409219845136168174, −11.11304553140246309728494652812, −9.820437134345424814553307718775, −8.269149256054203646871253978662, −6.11761929321551634880283495148, −3.17648036595521212323167511635,
3.80768540697067178356210859712, 7.00377100269439949615422199973, 7.910717366185993546844553523571, 9.494130765849989756054432642969, 11.75592968208496928270867203428, 12.70873457819104802394232496202, 14.34633160381525503452410563419, 15.85860717688117591062652482968, 16.59476181623643885669766982873, 17.87713402532611485950052584663