| L(s) = 1 | + (0.643 − 1.11i)3-s + 15.8i·5-s + (1.02 − 0.592i)7-s + (12.6 + 21.9i)9-s + (−33.6 − 19.4i)11-s + (−45.4 − 11.4i)13-s + (17.7 + 10.2i)15-s + (−18.4 − 31.9i)17-s + (−37.1 + 21.4i)19-s − 1.52i·21-s + (−101. + 176. i)23-s − 127.·25-s + 67.3·27-s + (−29.4 + 51.0i)29-s + 77.3i·31-s + ⋯ |
| L(s) = 1 | + (0.123 − 0.214i)3-s + 1.42i·5-s + (0.0553 − 0.0319i)7-s + (0.469 + 0.812i)9-s + (−0.923 − 0.533i)11-s + (−0.969 − 0.244i)13-s + (0.304 + 0.176i)15-s + (−0.263 − 0.456i)17-s + (−0.449 + 0.259i)19-s − 0.0158i·21-s + (−0.924 + 1.60i)23-s − 1.02·25-s + 0.480·27-s + (−0.188 + 0.327i)29-s + 0.448i·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 208 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.726 - 0.687i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 208 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (-0.726 - 0.687i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(2)\) |
\(\approx\) |
\(0.380829 + 0.956459i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.380829 + 0.956459i\) |
| \(L(\frac{5}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 \) |
| 13 | \( 1 + (45.4 + 11.4i)T \) |
| good | 3 | \( 1 + (-0.643 + 1.11i)T + (-13.5 - 23.3i)T^{2} \) |
| 5 | \( 1 - 15.8iT - 125T^{2} \) |
| 7 | \( 1 + (-1.02 + 0.592i)T + (171.5 - 297. i)T^{2} \) |
| 11 | \( 1 + (33.6 + 19.4i)T + (665.5 + 1.15e3i)T^{2} \) |
| 17 | \( 1 + (18.4 + 31.9i)T + (-2.45e3 + 4.25e3i)T^{2} \) |
| 19 | \( 1 + (37.1 - 21.4i)T + (3.42e3 - 5.94e3i)T^{2} \) |
| 23 | \( 1 + (101. - 176. i)T + (-6.08e3 - 1.05e4i)T^{2} \) |
| 29 | \( 1 + (29.4 - 51.0i)T + (-1.21e4 - 2.11e4i)T^{2} \) |
| 31 | \( 1 - 77.3iT - 2.97e4T^{2} \) |
| 37 | \( 1 + (-223. - 129. i)T + (2.53e4 + 4.38e4i)T^{2} \) |
| 41 | \( 1 + (-146. - 84.8i)T + (3.44e4 + 5.96e4i)T^{2} \) |
| 43 | \( 1 + (183. + 317. i)T + (-3.97e4 + 6.88e4i)T^{2} \) |
| 47 | \( 1 - 249. iT - 1.03e5T^{2} \) |
| 53 | \( 1 - 157.T + 1.48e5T^{2} \) |
| 59 | \( 1 + (582. - 336. i)T + (1.02e5 - 1.77e5i)T^{2} \) |
| 61 | \( 1 + (290. + 502. i)T + (-1.13e5 + 1.96e5i)T^{2} \) |
| 67 | \( 1 + (156. + 90.4i)T + (1.50e5 + 2.60e5i)T^{2} \) |
| 71 | \( 1 + (-449. + 259. i)T + (1.78e5 - 3.09e5i)T^{2} \) |
| 73 | \( 1 + 982. iT - 3.89e5T^{2} \) |
| 79 | \( 1 - 1.26e3T + 4.93e5T^{2} \) |
| 83 | \( 1 - 1.02e3iT - 5.71e5T^{2} \) |
| 89 | \( 1 + (-1.28e3 - 742. i)T + (3.52e5 + 6.10e5i)T^{2} \) |
| 97 | \( 1 + (303. - 175. i)T + (4.56e5 - 7.90e5i)T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.29217545156577201745354020390, −11.08236791597311605596171637669, −10.51499995556124237961376447262, −9.590329515756049511947577288014, −7.86419293474078500744551335732, −7.45771061953158803883863211210, −6.22124813389607206604039870877, −4.92828991440122013700299973752, −3.23297473515889214180028689634, −2.17588029323835282059604188132,
0.40509918730244166318724374059, 2.19960484714657884427254322398, 4.22140234371288922042313135056, 4.88682441038509132995073802393, 6.29742823895375944684610191979, 7.69277595307136254928610558443, 8.657835451462443787739434246722, 9.555861728708257875118868426743, 10.35339059844462716524070802455, 11.84575682765136671345750160043