L(s) = 1 | + 182.·3-s − 909. i·5-s + 3.89e3i·7-s + 1.36e4·9-s − 4.20e4i·11-s + (−1.53e4 + 1.01e5i)13-s − 1.66e5i·15-s − 4.05e5·17-s + 7.33e5i·19-s + 7.11e5i·21-s + 2.38e6·23-s + 1.12e6·25-s − 1.09e6·27-s − 6.21e6·29-s − 1.75e6i·31-s + ⋯ |
L(s) = 1 | + 1.30·3-s − 0.650i·5-s + 0.613i·7-s + 0.694·9-s − 0.865i·11-s + (−0.148 + 0.988i)13-s − 0.846i·15-s − 1.17·17-s + 1.29i·19-s + 0.798i·21-s + 1.77·23-s + 0.576·25-s − 0.397·27-s − 1.63·29-s − 0.342i·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 208 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.148 - 0.988i)\, \overline{\Lambda}(10-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 208 ^{s/2} \, \Gamma_{\C}(s+9/2) \, L(s)\cr =\mathstrut & (0.148 - 0.988i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(5)\) |
\(\approx\) |
\(2.632087681\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.632087681\) |
\(L(\frac{11}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 13 | \( 1 + (1.53e4 - 1.01e5i)T \) |
good | 3 | \( 1 - 182.T + 1.96e4T^{2} \) |
| 5 | \( 1 + 909. iT - 1.95e6T^{2} \) |
| 7 | \( 1 - 3.89e3iT - 4.03e7T^{2} \) |
| 11 | \( 1 + 4.20e4iT - 2.35e9T^{2} \) |
| 17 | \( 1 + 4.05e5T + 1.18e11T^{2} \) |
| 19 | \( 1 - 7.33e5iT - 3.22e11T^{2} \) |
| 23 | \( 1 - 2.38e6T + 1.80e12T^{2} \) |
| 29 | \( 1 + 6.21e6T + 1.45e13T^{2} \) |
| 31 | \( 1 + 1.75e6iT - 2.64e13T^{2} \) |
| 37 | \( 1 - 1.58e7iT - 1.29e14T^{2} \) |
| 41 | \( 1 - 1.90e7iT - 3.27e14T^{2} \) |
| 43 | \( 1 + 1.39e7T + 5.02e14T^{2} \) |
| 47 | \( 1 - 1.76e7iT - 1.11e15T^{2} \) |
| 53 | \( 1 - 1.03e8T + 3.29e15T^{2} \) |
| 59 | \( 1 - 1.34e8iT - 8.66e15T^{2} \) |
| 61 | \( 1 + 4.27e7T + 1.16e16T^{2} \) |
| 67 | \( 1 - 1.49e8iT - 2.72e16T^{2} \) |
| 71 | \( 1 + 2.27e8iT - 4.58e16T^{2} \) |
| 73 | \( 1 + 1.48e8iT - 5.88e16T^{2} \) |
| 79 | \( 1 + 8.27e7T + 1.19e17T^{2} \) |
| 83 | \( 1 - 3.33e8iT - 1.86e17T^{2} \) |
| 89 | \( 1 + 2.12e8iT - 3.50e17T^{2} \) |
| 97 | \( 1 - 8.43e8iT - 7.60e17T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.01965961096865464580567297484, −9.524613576985229861925398878357, −8.848791087185913683477228905532, −8.397316746829712399372863892590, −7.13009344445947106462914624548, −5.81664731875899355107972292078, −4.54109384294793688789696951587, −3.38660574788063313423989501534, −2.35997806757413815011567594693, −1.28133040448793233315752057329,
0.44006508480098164145295608493, 2.09338467588672988386537176634, 2.89389786747188611434100411652, 3.89839697494776583879644271174, 5.16765190236204910738858783137, 7.06405920839117394379559238197, 7.27205031299881035794077547901, 8.685962329237829568108706815498, 9.331980818447253039044621451946, 10.52797538270876405944434919595