Properties

Label 2-2057-1.1-c3-0-12
Degree $2$
Conductor $2057$
Sign $1$
Analytic cond. $121.366$
Root an. cond. $11.0166$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 0.417·2-s − 5.36·3-s − 7.82·4-s − 14.2·5-s + 2.23·6-s − 7.39·7-s + 6.59·8-s + 1.78·9-s + 5.92·10-s + 41.9·12-s + 49.4·13-s + 3.08·14-s + 76.2·15-s + 59.8·16-s + 17·17-s − 0.744·18-s − 91.9·19-s + 111.·20-s + 39.6·21-s + 142.·23-s − 35.4·24-s + 76.7·25-s − 20.6·26-s + 135.·27-s + 57.9·28-s − 165.·29-s − 31.7·30-s + ⋯
L(s)  = 1  − 0.147·2-s − 1.03·3-s − 0.978·4-s − 1.27·5-s + 0.152·6-s − 0.399·7-s + 0.291·8-s + 0.0660·9-s + 0.187·10-s + 1.01·12-s + 1.05·13-s + 0.0588·14-s + 1.31·15-s + 0.935·16-s + 0.242·17-s − 0.00974·18-s − 1.11·19-s + 1.24·20-s + 0.412·21-s + 1.29·23-s − 0.301·24-s + 0.614·25-s − 0.155·26-s + 0.964·27-s + 0.390·28-s − 1.06·29-s − 0.193·30-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2057 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2057 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2057\)    =    \(11^{2} \cdot 17\)
Sign: $1$
Analytic conductor: \(121.366\)
Root analytic conductor: \(11.0166\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 2057,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(0.05878580867\)
\(L(\frac12)\) \(\approx\) \(0.05878580867\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad11 \( 1 \)
17 \( 1 - 17T \)
good2 \( 1 + 0.417T + 8T^{2} \)
3 \( 1 + 5.36T + 27T^{2} \)
5 \( 1 + 14.2T + 125T^{2} \)
7 \( 1 + 7.39T + 343T^{2} \)
13 \( 1 - 49.4T + 2.19e3T^{2} \)
19 \( 1 + 91.9T + 6.85e3T^{2} \)
23 \( 1 - 142.T + 1.21e4T^{2} \)
29 \( 1 + 165.T + 2.43e4T^{2} \)
31 \( 1 + 249.T + 2.97e4T^{2} \)
37 \( 1 + 319.T + 5.06e4T^{2} \)
41 \( 1 - 282.T + 6.89e4T^{2} \)
43 \( 1 + 333.T + 7.95e4T^{2} \)
47 \( 1 + 334.T + 1.03e5T^{2} \)
53 \( 1 - 371.T + 1.48e5T^{2} \)
59 \( 1 + 246.T + 2.05e5T^{2} \)
61 \( 1 + 688.T + 2.26e5T^{2} \)
67 \( 1 + 535.T + 3.00e5T^{2} \)
71 \( 1 - 1.00e3T + 3.57e5T^{2} \)
73 \( 1 + 496.T + 3.89e5T^{2} \)
79 \( 1 - 232.T + 4.93e5T^{2} \)
83 \( 1 + 610.T + 5.71e5T^{2} \)
89 \( 1 - 863.T + 7.04e5T^{2} \)
97 \( 1 - 546.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.753574187296617249809434551530, −8.103572817861144546279015442906, −7.22004392012102714201751752429, −6.35772273107802195900854850924, −5.49582837334894184081267410349, −4.78392134756250679295234371543, −3.86178565422109597920173845101, −3.31230171118040444585298825771, −1.35000556133758427926744779911, −0.13214311882466097338603684040, 0.13214311882466097338603684040, 1.35000556133758427926744779911, 3.31230171118040444585298825771, 3.86178565422109597920173845101, 4.78392134756250679295234371543, 5.49582837334894184081267410349, 6.35772273107802195900854850924, 7.22004392012102714201751752429, 8.103572817861144546279015442906, 8.753574187296617249809434551530

Graph of the $Z$-function along the critical line