L(s) = 1 | + 2.01·2-s + (1.65 − 1.65i)3-s + 2.04·4-s + (−2.11 + 0.728i)5-s + (3.32 − 3.32i)6-s + (−0.756 + 0.756i)7-s + 0.0829·8-s − 2.45i·9-s + (−4.24 + 1.46i)10-s + (1.97 + 1.97i)11-s + (3.37 − 3.37i)12-s + (0.895 − 0.895i)13-s + (−1.52 + 1.52i)14-s + (−2.28 + 4.69i)15-s − 3.91·16-s + (−0.688 − 0.688i)17-s + ⋯ |
L(s) = 1 | + 1.42·2-s + (0.953 − 0.953i)3-s + 1.02·4-s + (−0.945 + 0.325i)5-s + (1.35 − 1.35i)6-s + (−0.285 + 0.285i)7-s + 0.0293·8-s − 0.819i·9-s + (−1.34 + 0.463i)10-s + (0.596 + 0.596i)11-s + (0.973 − 0.973i)12-s + (0.248 − 0.248i)13-s + (−0.406 + 0.406i)14-s + (−0.590 + 1.21i)15-s − 0.978·16-s + (−0.166 − 0.166i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 205 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.867 + 0.496i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 205 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.867 + 0.496i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.48154 - 0.660036i\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.48154 - 0.660036i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 + (2.11 - 0.728i)T \) |
| 41 | \( 1 + (-5.94 + 2.38i)T \) |
good | 2 | \( 1 - 2.01T + 2T^{2} \) |
| 3 | \( 1 + (-1.65 + 1.65i)T - 3iT^{2} \) |
| 7 | \( 1 + (0.756 - 0.756i)T - 7iT^{2} \) |
| 11 | \( 1 + (-1.97 - 1.97i)T + 11iT^{2} \) |
| 13 | \( 1 + (-0.895 + 0.895i)T - 13iT^{2} \) |
| 17 | \( 1 + (0.688 + 0.688i)T + 17iT^{2} \) |
| 19 | \( 1 + (3.27 - 3.27i)T - 19iT^{2} \) |
| 23 | \( 1 + 6.02iT - 23T^{2} \) |
| 29 | \( 1 + (0.0412 + 0.0412i)T + 29iT^{2} \) |
| 31 | \( 1 + 2.91T + 31T^{2} \) |
| 37 | \( 1 - 5.82iT - 37T^{2} \) |
| 43 | \( 1 - 12.1T + 43T^{2} \) |
| 47 | \( 1 + (8.76 + 8.76i)T + 47iT^{2} \) |
| 53 | \( 1 + (-3.33 + 3.33i)T - 53iT^{2} \) |
| 59 | \( 1 + 1.23T + 59T^{2} \) |
| 61 | \( 1 + 8.72iT - 61T^{2} \) |
| 67 | \( 1 + (4.81 + 4.81i)T + 67iT^{2} \) |
| 71 | \( 1 + (4.73 + 4.73i)T + 71iT^{2} \) |
| 73 | \( 1 + 14.0T + 73T^{2} \) |
| 79 | \( 1 + (-7.36 - 7.36i)T + 79iT^{2} \) |
| 83 | \( 1 - 0.852iT - 83T^{2} \) |
| 89 | \( 1 + (-3.89 - 3.89i)T + 89iT^{2} \) |
| 97 | \( 1 + (-3.82 - 3.82i)T + 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.53037299933646337491411898732, −11.99665411628797885500130861130, −10.76137287601165604674035767240, −9.066670383660835970178330202987, −8.106617386763505950573109370622, −7.02877155226166559586814267737, −6.22357790390616132797163977471, −4.52017233117892676488237503843, −3.48020314596680585156361508259, −2.36557089091695798692551266599,
3.01700589597590079509188889641, 3.93092339045797498870433735475, 4.44757778290625960676307294102, 5.93553345133696773330037332740, 7.32220949777001581443009651596, 8.743110223357675971050707703473, 9.292057258966163563489848772053, 10.87692929780918286511113480401, 11.63916627292109169108851276367, 12.76395766185804007987855505837