L(s) = 1 | + 1.22·2-s + (−1.56 + 1.56i)3-s − 0.503·4-s + (−2.19 + 0.434i)5-s + (−1.90 + 1.90i)6-s + (−0.202 + 0.202i)7-s − 3.06·8-s − 1.86i·9-s + (−2.68 + 0.532i)10-s + (0.118 + 0.118i)11-s + (0.785 − 0.785i)12-s + (−1.76 + 1.76i)13-s + (−0.248 + 0.248i)14-s + (2.74 − 4.10i)15-s − 2.73·16-s + (3.70 + 3.70i)17-s + ⋯ |
L(s) = 1 | + 0.865·2-s + (−0.900 + 0.900i)3-s − 0.251·4-s + (−0.980 + 0.194i)5-s + (−0.779 + 0.779i)6-s + (−0.0767 + 0.0767i)7-s − 1.08·8-s − 0.623i·9-s + (−0.848 + 0.168i)10-s + (0.0356 + 0.0356i)11-s + (0.226 − 0.226i)12-s + (−0.489 + 0.489i)13-s + (−0.0663 + 0.0663i)14-s + (0.708 − 1.05i)15-s − 0.684·16-s + (0.898 + 0.898i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 205 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.898 - 0.438i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 205 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.898 - 0.438i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.140232 + 0.607630i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.140232 + 0.607630i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 + (2.19 - 0.434i)T \) |
| 41 | \( 1 + (5.34 - 3.53i)T \) |
good | 2 | \( 1 - 1.22T + 2T^{2} \) |
| 3 | \( 1 + (1.56 - 1.56i)T - 3iT^{2} \) |
| 7 | \( 1 + (0.202 - 0.202i)T - 7iT^{2} \) |
| 11 | \( 1 + (-0.118 - 0.118i)T + 11iT^{2} \) |
| 13 | \( 1 + (1.76 - 1.76i)T - 13iT^{2} \) |
| 17 | \( 1 + (-3.70 - 3.70i)T + 17iT^{2} \) |
| 19 | \( 1 + (0.594 - 0.594i)T - 19iT^{2} \) |
| 23 | \( 1 - 3.99iT - 23T^{2} \) |
| 29 | \( 1 + (-2.50 - 2.50i)T + 29iT^{2} \) |
| 31 | \( 1 + 1.73T + 31T^{2} \) |
| 37 | \( 1 + 5.93iT - 37T^{2} \) |
| 43 | \( 1 + 3.38T + 43T^{2} \) |
| 47 | \( 1 + (-4.17 - 4.17i)T + 47iT^{2} \) |
| 53 | \( 1 + (-6.15 + 6.15i)T - 53iT^{2} \) |
| 59 | \( 1 + 13.0T + 59T^{2} \) |
| 61 | \( 1 - 6.82iT - 61T^{2} \) |
| 67 | \( 1 + (10.7 + 10.7i)T + 67iT^{2} \) |
| 71 | \( 1 + (1.46 + 1.46i)T + 71iT^{2} \) |
| 73 | \( 1 - 3.95T + 73T^{2} \) |
| 79 | \( 1 + (0.412 + 0.412i)T + 79iT^{2} \) |
| 83 | \( 1 - 13.3iT - 83T^{2} \) |
| 89 | \( 1 + (-8.68 - 8.68i)T + 89iT^{2} \) |
| 97 | \( 1 + (0.699 + 0.699i)T + 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.51847805046560586489107270886, −11.99518167014707803472683038644, −11.07755091078782303477856000585, −10.12151066216770951674510829378, −9.029899350914701040169513263178, −7.70651981220995323530564165781, −6.22975785442146071689383204417, −5.19830766201810032656473297082, −4.31708263422188152898156128016, −3.42372350715637961184159255158,
0.46033172665842631963707317695, 3.20407272768036826856167465180, 4.61547304789627778740458707715, 5.52913889047003153104047373472, 6.69631958611399213538457216708, 7.67174969346904490543482510598, 8.851742554111022493839028794891, 10.28977047152721386840462488807, 11.74328135684224435102607772175, 12.00733082846671135578095104797