L(s) = 1 | + (−0.5 − 0.866i)3-s + (−1.73 − i)7-s + (−0.499 + 0.866i)9-s + (−3 + 5.19i)17-s + (1.73 + i)19-s + 1.99i·21-s + 5·25-s + 0.999·27-s + (3 + 5.19i)29-s − 2i·31-s + (1.73 − i)37-s + (10.3 − 6i)41-s + (−2 + 3.46i)43-s + (−1.50 − 2.59i)49-s + 6·51-s + ⋯ |
L(s) = 1 | + (−0.288 − 0.499i)3-s + (−0.654 − 0.377i)7-s + (−0.166 + 0.288i)9-s + (−0.727 + 1.26i)17-s + (0.397 + 0.229i)19-s + 0.436i·21-s + 25-s + 0.192·27-s + (0.557 + 0.964i)29-s − 0.359i·31-s + (0.284 − 0.164i)37-s + (1.62 − 0.937i)41-s + (−0.304 + 0.528i)43-s + (−0.214 − 0.371i)49-s + 0.840·51-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2028 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.997 + 0.0771i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2028 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.997 + 0.0771i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.314599057\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.314599057\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (0.5 + 0.866i)T \) |
| 13 | \( 1 \) |
good | 5 | \( 1 - 5T^{2} \) |
| 7 | \( 1 + (1.73 + i)T + (3.5 + 6.06i)T^{2} \) |
| 11 | \( 1 + (5.5 - 9.52i)T^{2} \) |
| 17 | \( 1 + (3 - 5.19i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (-1.73 - i)T + (9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (-3 - 5.19i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + 2iT - 31T^{2} \) |
| 37 | \( 1 + (-1.73 + i)T + (18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + (-10.3 + 6i)T + (20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (2 - 3.46i)T + (-21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 - 47T^{2} \) |
| 53 | \( 1 - 6T + 53T^{2} \) |
| 59 | \( 1 + (10.3 + 6i)T + (29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (1 - 1.73i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (-8.66 + 5i)T + (33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + (-10.3 - 6i)T + (35.5 + 61.4i)T^{2} \) |
| 73 | \( 1 - 14iT - 73T^{2} \) |
| 79 | \( 1 - 8T + 79T^{2} \) |
| 83 | \( 1 + 12iT - 83T^{2} \) |
| 89 | \( 1 + (44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + (8.66 + 5i)T + (48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.067785166228114219736567902400, −8.337464960003849985919404473404, −7.47774666679983461991595331073, −6.70041057685122078337229628777, −6.16361606966388197049730531506, −5.20448706487560183103102399192, −4.18761138087441434411594492652, −3.27035290158419196483283478192, −2.12627547699312770981485010221, −0.860022363304645391032987063026,
0.68570461491164165898663508689, 2.48792602208548771140129886102, 3.20424758004710687034445020955, 4.40571509812581224997765160617, 5.03232292171827766474903831087, 6.02438365219837960034211202011, 6.67480813812565383867120437379, 7.52935793872837974516916624649, 8.553628086613042452022898517451, 9.361404308128479314221470579890