| L(s) = 1 | + (−0.5 − 0.866i)3-s + 2·5-s + (2 − 3.46i)7-s + (−0.499 + 0.866i)9-s + (−3 − 5.19i)11-s + (−1 − 1.73i)15-s + (−1 + 1.73i)17-s − 3.99·21-s + (−4 − 6.92i)23-s − 25-s + 0.999·27-s + (−1 − 1.73i)29-s − 8·31-s + (−3 + 5.19i)33-s + (4 − 6.92i)35-s + ⋯ |
| L(s) = 1 | + (−0.288 − 0.499i)3-s + 0.894·5-s + (0.755 − 1.30i)7-s + (−0.166 + 0.288i)9-s + (−0.904 − 1.56i)11-s + (−0.258 − 0.447i)15-s + (−0.242 + 0.420i)17-s − 0.872·21-s + (−0.834 − 1.44i)23-s − 0.200·25-s + 0.192·27-s + (−0.185 − 0.321i)29-s − 1.43·31-s + (−0.522 + 0.904i)33-s + (0.676 − 1.17i)35-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2028 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.872 + 0.488i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2028 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.872 + 0.488i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(1.387633883\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.387633883\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 \) |
| 3 | \( 1 + (0.5 + 0.866i)T \) |
| 13 | \( 1 \) |
| good | 5 | \( 1 - 2T + 5T^{2} \) |
| 7 | \( 1 + (-2 + 3.46i)T + (-3.5 - 6.06i)T^{2} \) |
| 11 | \( 1 + (3 + 5.19i)T + (-5.5 + 9.52i)T^{2} \) |
| 17 | \( 1 + (1 - 1.73i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (-9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (4 + 6.92i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (1 + 1.73i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + 8T + 31T^{2} \) |
| 37 | \( 1 + (-4 - 6.92i)T + (-18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + (-1 - 1.73i)T + (-20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (4 - 6.92i)T + (-21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 - 6T + 47T^{2} \) |
| 53 | \( 1 - 6T + 53T^{2} \) |
| 59 | \( 1 + (1 - 1.73i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (1 - 1.73i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (2 + 3.46i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + (3 - 5.19i)T + (-35.5 - 61.4i)T^{2} \) |
| 73 | \( 1 - 4T + 73T^{2} \) |
| 79 | \( 1 + 79T^{2} \) |
| 83 | \( 1 - 14T + 83T^{2} \) |
| 89 | \( 1 + (-3 - 5.19i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + (-6 + 10.3i)T + (-48.5 - 84.0i)T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.548583308449223808370208091842, −8.066296238271871124932920325157, −7.30985316203668655454752940652, −6.28159525747618395074265400778, −5.81530488679215928429099206513, −4.85837981214655779753889615028, −3.91061370836501476058584103792, −2.67699246988239394020151710013, −1.60758720794686890538022820033, −0.47905421813076879068820669446,
1.97650801983264255256554280590, 2.25821418922262888806217495572, 3.78835736438860814719252569264, 4.95857582726280406467229117540, 5.39616740895194054846133420308, 5.96408806509461382819148215494, 7.23961289993826900816749729561, 7.84364284147747870854718631821, 9.071150834859523920568686744617, 9.339369091268400446961716809545