| L(s) = 1 | + 1.87·2-s + 2.53·4-s + i·7-s + 2.87·8-s − 9-s − i·11-s + 1.87i·14-s + 2.87·16-s − 1.87·18-s − 1.87i·22-s + 0.347i·23-s − 25-s + 2.53i·28-s − 1.53i·29-s + 2.53·32-s + ⋯ |
| L(s) = 1 | + 1.87·2-s + 2.53·4-s + i·7-s + 2.87·8-s − 9-s − i·11-s + 1.87i·14-s + 2.87·16-s − 1.87·18-s − 1.87i·22-s + 0.347i·23-s − 25-s + 2.53i·28-s − 1.53i·29-s + 2.53·32-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2023 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.985 - 0.168i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2023 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.985 - 0.168i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(3.360864354\) |
| \(L(\frac12)\) |
\(\approx\) |
\(3.360864354\) |
| \(L(1)\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 7 | \( 1 - iT \) |
| 17 | \( 1 \) |
| good | 2 | \( 1 - 1.87T + T^{2} \) |
| 3 | \( 1 + T^{2} \) |
| 5 | \( 1 + T^{2} \) |
| 11 | \( 1 + iT - T^{2} \) |
| 13 | \( 1 - T^{2} \) |
| 19 | \( 1 - T^{2} \) |
| 23 | \( 1 - 0.347iT - T^{2} \) |
| 29 | \( 1 + 1.53iT - T^{2} \) |
| 31 | \( 1 + T^{2} \) |
| 37 | \( 1 - 1.87iT - T^{2} \) |
| 41 | \( 1 + T^{2} \) |
| 43 | \( 1 + 0.347T + T^{2} \) |
| 47 | \( 1 - T^{2} \) |
| 53 | \( 1 + 0.347T + T^{2} \) |
| 59 | \( 1 - T^{2} \) |
| 61 | \( 1 + T^{2} \) |
| 67 | \( 1 + T + T^{2} \) |
| 71 | \( 1 + 1.53iT - T^{2} \) |
| 73 | \( 1 + T^{2} \) |
| 79 | \( 1 + 1.87iT - T^{2} \) |
| 83 | \( 1 - T^{2} \) |
| 89 | \( 1 - T^{2} \) |
| 97 | \( 1 + T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.341433207329269568964256614734, −8.334540299786406446834797076859, −7.71766235741264537678956118527, −6.33631824204349189040774277321, −6.07794564210279202382627885484, −5.38790721755357517239999239181, −4.59489165940278326519231684566, −3.45363347518319274463987677254, −2.90888091936582648818679529265, −1.97384257744188545655507611630,
1.77553930961386423544167316422, 2.80298199850150122553010819001, 3.72585410406036103302416776661, 4.36931129449905530392264372414, 5.23010658630410797722831402534, 5.88759656019654461225263406164, 6.87735096307785968777502548458, 7.29021329014677346175589790674, 8.229296161952321189740779591326, 9.476997217357531234774648777078