Properties

Label 8-2000e4-1.1-c1e4-0-8
Degree $8$
Conductor $1.600\times 10^{13}$
Sign $1$
Analytic cond. $65047.1$
Root an. cond. $3.99625$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s + 9·7-s − 5·11-s + 4·13-s + 4·17-s + 9·21-s + 11·23-s − 2·27-s + 10·29-s − 9·31-s − 5·33-s + 15·37-s + 4·39-s + 17·41-s − 12·43-s + 14·47-s + 35·49-s + 4·51-s − 6·53-s − 18·59-s + 11·61-s + 67-s + 11·69-s − 26·71-s + 9·73-s − 45·77-s + 8·79-s + ⋯
L(s)  = 1  + 0.577·3-s + 3.40·7-s − 1.50·11-s + 1.10·13-s + 0.970·17-s + 1.96·21-s + 2.29·23-s − 0.384·27-s + 1.85·29-s − 1.61·31-s − 0.870·33-s + 2.46·37-s + 0.640·39-s + 2.65·41-s − 1.82·43-s + 2.04·47-s + 5·49-s + 0.560·51-s − 0.824·53-s − 2.34·59-s + 1.40·61-s + 0.122·67-s + 1.32·69-s − 3.08·71-s + 1.05·73-s − 5.12·77-s + 0.900·79-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{16} \cdot 5^{12}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{16} \cdot 5^{12}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{16} \cdot 5^{12}\)
Sign: $1$
Analytic conductor: \(65047.1\)
Root analytic conductor: \(3.99625\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{16} \cdot 5^{12} ,\ ( \ : 1/2, 1/2, 1/2, 1/2 ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(13.50965673\)
\(L(\frac12)\) \(\approx\) \(13.50965673\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
5 \( 1 \)
good3$C_2 \wr C_2\wr C_2$ \( 1 - T + T^{2} + T^{3} + 8 T^{4} + p T^{5} + p^{2} T^{6} - p^{3} T^{7} + p^{4} T^{8} \) 4.3.ab_b_b_i
7$C_2 \wr C_2\wr C_2$ \( 1 - 9 T + 46 T^{2} - 172 T^{3} + 515 T^{4} - 172 p T^{5} + 46 p^{2} T^{6} - 9 p^{3} T^{7} + p^{4} T^{8} \) 4.7.aj_bu_agq_tv
11$C_2 \wr C_2\wr C_2$ \( 1 + 5 T + 42 T^{2} + 140 T^{3} + 683 T^{4} + 140 p T^{5} + 42 p^{2} T^{6} + 5 p^{3} T^{7} + p^{4} T^{8} \) 4.11.f_bq_fk_bah
13$C_2 \wr C_2\wr C_2$ \( 1 - 4 T + 35 T^{2} - 154 T^{3} + 591 T^{4} - 154 p T^{5} + 35 p^{2} T^{6} - 4 p^{3} T^{7} + p^{4} T^{8} \) 4.13.ae_bj_afy_wt
17$C_2 \wr C_2\wr C_2$ \( 1 - 4 T + 47 T^{2} - 104 T^{3} + 940 T^{4} - 104 p T^{5} + 47 p^{2} T^{6} - 4 p^{3} T^{7} + p^{4} T^{8} \) 4.17.ae_bv_aea_bke
19$C_2 \wr C_2\wr C_2$ \( 1 + p T^{2} - 110 T^{3} + 191 T^{4} - 110 p T^{5} + p^{3} T^{6} + p^{4} T^{8} \) 4.19.a_t_aeg_hj
23$C_2 \wr C_2\wr C_2$ \( 1 - 11 T + 95 T^{2} - 561 T^{3} + 2996 T^{4} - 561 p T^{5} + 95 p^{2} T^{6} - 11 p^{3} T^{7} + p^{4} T^{8} \) 4.23.al_dr_avp_elg
29$C_2 \wr C_2\wr C_2$ \( 1 - 10 T + 123 T^{2} - 860 T^{3} + 5448 T^{4} - 860 p T^{5} + 123 p^{2} T^{6} - 10 p^{3} T^{7} + p^{4} T^{8} \) 4.29.ak_et_abhc_ibo
31$C_2 \wr C_2\wr C_2$ \( 1 + 9 T + 73 T^{2} + 127 T^{3} + 824 T^{4} + 127 p T^{5} + 73 p^{2} T^{6} + 9 p^{3} T^{7} + p^{4} T^{8} \) 4.31.j_cv_ex_bfs
37$C_2 \wr C_2\wr C_2$ \( 1 - 15 T + 191 T^{2} - 1535 T^{3} + 10992 T^{4} - 1535 p T^{5} + 191 p^{2} T^{6} - 15 p^{3} T^{7} + p^{4} T^{8} \) 4.37.ap_hj_achb_qgu
41$C_2 \wr C_2\wr C_2$ \( 1 - 17 T + 166 T^{2} - 1432 T^{3} + 10389 T^{4} - 1432 p T^{5} + 166 p^{2} T^{6} - 17 p^{3} T^{7} + p^{4} T^{8} \) 4.41.ar_gk_acdc_pjp
43$C_2 \wr C_2\wr C_2$ \( 1 + 12 T + 199 T^{2} + 1544 T^{3} + 13400 T^{4} + 1544 p T^{5} + 199 p^{2} T^{6} + 12 p^{3} T^{7} + p^{4} T^{8} \) 4.43.m_hr_chk_tvk
47$D_{4}$ \( ( 1 - 7 T + 75 T^{2} - 7 p T^{3} + p^{2} T^{4} )^{2} \) 4.47.ao_hr_acns_vrl
53$C_2 \wr C_2\wr C_2$ \( 1 + 6 T + 113 T^{2} + 230 T^{3} + 5651 T^{4} + 230 p T^{5} + 113 p^{2} T^{6} + 6 p^{3} T^{7} + p^{4} T^{8} \) 4.53.g_ej_iw_ijj
59$C_2 \wr C_2\wr C_2$ \( 1 + 18 T + 333 T^{2} + 3330 T^{3} + 32271 T^{4} + 3330 p T^{5} + 333 p^{2} T^{6} + 18 p^{3} T^{7} + p^{4} T^{8} \) 4.59.s_mv_eyc_bvtf
61$C_2 \wr C_2\wr C_2$ \( 1 - 11 T + 273 T^{2} - 1993 T^{3} + 25764 T^{4} - 1993 p T^{5} + 273 p^{2} T^{6} - 11 p^{3} T^{7} + p^{4} T^{8} \) 4.61.al_kn_acyr_bmcy
67$C_2 \wr C_2\wr C_2$ \( 1 - T + 71 T^{2} - 183 T^{3} + 9060 T^{4} - 183 p T^{5} + 71 p^{2} T^{6} - p^{3} T^{7} + p^{4} T^{8} \) 4.67.ab_ct_ahb_nkm
71$C_2 \wr C_2\wr C_2$ \( 1 + 26 T + 423 T^{2} + 5148 T^{3} + 49964 T^{4} + 5148 p T^{5} + 423 p^{2} T^{6} + 26 p^{3} T^{7} + p^{4} T^{8} \) 4.71.ba_qh_hqa_cvxs
73$C_2 \wr C_2\wr C_2$ \( 1 - 9 T + 185 T^{2} - 1489 T^{3} + 18876 T^{4} - 1489 p T^{5} + 185 p^{2} T^{6} - 9 p^{3} T^{7} + p^{4} T^{8} \) 4.73.aj_hd_acfh_bbya
79$C_2 \wr C_2\wr C_2$ \( 1 - 8 T + 227 T^{2} - 1456 T^{3} + 25804 T^{4} - 1456 p T^{5} + 227 p^{2} T^{6} - 8 p^{3} T^{7} + p^{4} T^{8} \) 4.79.ai_it_acea_bmem
83$C_2 \wr C_2\wr C_2$ \( 1 + 12 T + 144 T^{2} + 364 T^{3} + 4430 T^{4} + 364 p T^{5} + 144 p^{2} T^{6} + 12 p^{3} T^{7} + p^{4} T^{8} \) 4.83.m_fo_oa_gok
89$C_2 \wr C_2\wr C_2$ \( 1 - 5 T + 159 T^{2} + 245 T^{3} + 11376 T^{4} + 245 p T^{5} + 159 p^{2} T^{6} - 5 p^{3} T^{7} + p^{4} T^{8} \) 4.89.af_gd_jl_qvo
97$C_2 \wr C_2\wr C_2$ \( 1 - 29 T + 539 T^{2} - 7133 T^{3} + 76944 T^{4} - 7133 p T^{5} + 539 p^{2} T^{6} - 29 p^{3} T^{7} + p^{4} T^{8} \) 4.97.abd_ut_akoj_ejvk
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−6.64722655038192823497949119793, −6.15484805571670947768744907392, −5.91669245336759893381168401162, −5.79119076015371425167814766462, −5.74138585103238243163199753441, −5.39286718689044987996073201982, −5.22994120355996176546706063155, −4.89542872373031300762202365424, −4.80099227952209312796301463017, −4.66709407979397183615438707999, −4.34735569040026410427222021684, −4.24343555703895802442669842503, −4.17332433826997082655098985656, −3.51667170437704329704841028186, −3.21588951568655868795122509135, −3.17448506868828144765908984846, −3.03940107510563722723201619986, −2.47847745138481570327895006362, −2.36643164566664437304721055852, −2.17602467797532261803727557563, −1.72989445217769567701002108194, −1.44649272507705907320852538978, −1.21877049371398412906904541707, −0.902047124596039426690343607882, −0.62305978231393189104288334835, 0.62305978231393189104288334835, 0.902047124596039426690343607882, 1.21877049371398412906904541707, 1.44649272507705907320852538978, 1.72989445217769567701002108194, 2.17602467797532261803727557563, 2.36643164566664437304721055852, 2.47847745138481570327895006362, 3.03940107510563722723201619986, 3.17448506868828144765908984846, 3.21588951568655868795122509135, 3.51667170437704329704841028186, 4.17332433826997082655098985656, 4.24343555703895802442669842503, 4.34735569040026410427222021684, 4.66709407979397183615438707999, 4.80099227952209312796301463017, 4.89542872373031300762202365424, 5.22994120355996176546706063155, 5.39286718689044987996073201982, 5.74138585103238243163199753441, 5.79119076015371425167814766462, 5.91669245336759893381168401162, 6.15484805571670947768744907392, 6.64722655038192823497949119793

Graph of the $Z$-function along the critical line