L(s) = 1 | + 9·3-s − 694·7-s − 2.10e3·9-s + 4.90e3·11-s + 7.22e3·13-s + 1.59e4·17-s + 8.74e3·19-s − 6.24e3·21-s − 5.35e4·23-s − 3.86e4·27-s − 9.87e4·29-s − 6.50e4·31-s + 4.41e4·33-s − 3.23e5·37-s + 6.50e4·39-s + 1.70e5·41-s + 2.26e5·43-s + 3.99e5·47-s − 3.41e5·49-s + 1.43e5·51-s − 2.17e5·53-s + 7.87e4·57-s − 2.73e6·59-s − 1.41e6·61-s + 1.46e6·63-s − 3.16e6·67-s − 4.81e5·69-s + ⋯ |
L(s) = 1 | + 0.192·3-s − 0.764·7-s − 0.962·9-s + 1.11·11-s + 0.912·13-s + 0.786·17-s + 0.292·19-s − 0.147·21-s − 0.917·23-s − 0.377·27-s − 0.751·29-s − 0.392·31-s + 0.213·33-s − 1.05·37-s + 0.175·39-s + 0.385·41-s + 0.433·43-s + 0.561·47-s − 0.415·49-s + 0.151·51-s − 0.200·53-s + 0.0563·57-s − 1.73·59-s − 0.795·61-s + 0.736·63-s − 1.28·67-s − 0.176·69-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 200 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(8-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 200 ^{s/2} \, \Gamma_{\C}(s+7/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(4)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{9}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 \) |
good | 3 | \( 1 - p^{2} T + p^{7} T^{2} \) |
| 7 | \( 1 + 694 T + p^{7} T^{2} \) |
| 11 | \( 1 - 4901 T + p^{7} T^{2} \) |
| 13 | \( 1 - 556 p T + p^{7} T^{2} \) |
| 17 | \( 1 - 15925 T + p^{7} T^{2} \) |
| 19 | \( 1 - 8749 T + p^{7} T^{2} \) |
| 23 | \( 1 + 53554 T + p^{7} T^{2} \) |
| 29 | \( 1 + 98752 T + p^{7} T^{2} \) |
| 31 | \( 1 + 65030 T + p^{7} T^{2} \) |
| 37 | \( 1 + 323958 T + p^{7} T^{2} \) |
| 41 | \( 1 - 170277 T + p^{7} T^{2} \) |
| 43 | \( 1 - 226228 T + p^{7} T^{2} \) |
| 47 | \( 1 - 399932 T + p^{7} T^{2} \) |
| 53 | \( 1 + 217218 T + p^{7} T^{2} \) |
| 59 | \( 1 + 2733128 T + p^{7} T^{2} \) |
| 61 | \( 1 + 1410230 T + p^{7} T^{2} \) |
| 67 | \( 1 + 3163693 T + p^{7} T^{2} \) |
| 71 | \( 1 + 3458532 T + p^{7} T^{2} \) |
| 73 | \( 1 - 4113051 T + p^{7} T^{2} \) |
| 79 | \( 1 + 34386 T + p^{7} T^{2} \) |
| 83 | \( 1 - 1798039 T + p^{7} T^{2} \) |
| 89 | \( 1 + 12630321 T + p^{7} T^{2} \) |
| 97 | \( 1 + 7118942 T + p^{7} T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.72856349850752146473627790087, −9.514173861635240108250247219526, −8.840381635309265171284112552147, −7.69688609247592664080516655804, −6.39231962237570690799185052592, −5.65807802577630559034973171295, −3.92173402447911770843800543769, −3.08492112250881438965338262232, −1.48172822122045627845328272236, 0,
1.48172822122045627845328272236, 3.08492112250881438965338262232, 3.92173402447911770843800543769, 5.65807802577630559034973171295, 6.39231962237570690799185052592, 7.69688609247592664080516655804, 8.840381635309265171284112552147, 9.514173861635240108250247219526, 10.72856349850752146473627790087