| L(s) = 1 | + (−1.64 − 1.13i)2-s − 2.54·3-s + (1.41 + 3.73i)4-s + (4.19 + 2.89i)6-s − 8.05i·7-s + (1.90 − 7.76i)8-s − 2.51·9-s + 0.942·11-s + (−3.61 − 9.52i)12-s + 18.4i·13-s + (−9.15 + 13.2i)14-s + (−11.9 + 10.6i)16-s − 19.8·17-s + (4.13 + 2.85i)18-s + 20.8·19-s + ⋯ |
| L(s) = 1 | + (−0.823 − 0.567i)2-s − 0.849·3-s + (0.354 + 0.934i)4-s + (0.698 + 0.482i)6-s − 1.15i·7-s + (0.238 − 0.971i)8-s − 0.278·9-s + 0.0856·11-s + (−0.301 − 0.793i)12-s + 1.42i·13-s + (−0.653 + 0.947i)14-s + (−0.747 + 0.663i)16-s − 1.16·17-s + (0.229 + 0.158i)18-s + 1.09·19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 200 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.238 - 0.971i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 200 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.238 - 0.971i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{3}{2})\) |
\(\approx\) |
\(0.294575 + 0.230931i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.294575 + 0.230931i\) |
| \(L(2)\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 + (1.64 + 1.13i)T \) |
| 5 | \( 1 \) |
| good | 3 | \( 1 + 2.54T + 9T^{2} \) |
| 7 | \( 1 + 8.05iT - 49T^{2} \) |
| 11 | \( 1 - 0.942T + 121T^{2} \) |
| 13 | \( 1 - 18.4iT - 169T^{2} \) |
| 17 | \( 1 + 19.8T + 289T^{2} \) |
| 19 | \( 1 - 20.8T + 361T^{2} \) |
| 23 | \( 1 - 39.0iT - 529T^{2} \) |
| 29 | \( 1 - 13.7iT - 841T^{2} \) |
| 31 | \( 1 - 18.7iT - 961T^{2} \) |
| 37 | \( 1 - 52.7iT - 1.36e3T^{2} \) |
| 41 | \( 1 + 69.0T + 1.68e3T^{2} \) |
| 43 | \( 1 + 34.3T + 1.84e3T^{2} \) |
| 47 | \( 1 - 10.7iT - 2.20e3T^{2} \) |
| 53 | \( 1 + 29.5iT - 2.80e3T^{2} \) |
| 59 | \( 1 - 7.72T + 3.48e3T^{2} \) |
| 61 | \( 1 - 89.1iT - 3.72e3T^{2} \) |
| 67 | \( 1 - 2.10T + 4.48e3T^{2} \) |
| 71 | \( 1 + 115. iT - 5.04e3T^{2} \) |
| 73 | \( 1 - 88.0T + 5.32e3T^{2} \) |
| 79 | \( 1 + 28.2iT - 6.24e3T^{2} \) |
| 83 | \( 1 + 122.T + 6.88e3T^{2} \) |
| 89 | \( 1 + 44.5T + 7.92e3T^{2} \) |
| 97 | \( 1 - 97.8T + 9.40e3T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.77291452445700543668972548961, −11.56253645616375842896658889601, −10.58324327369463073801692105595, −9.646987192717424263985817111381, −8.626312476788406807438907202737, −7.25254189522226178430631666625, −6.58409629320157835818932131334, −4.81613793143037782524770574019, −3.47231452725464026638595534190, −1.42903089204889923610849149457,
0.32184722226063616459820280488, 2.53405347699606868515124209476, 5.08938532250168073484209178790, 5.79586576551355919291078158204, 6.72710685780603786027415261459, 8.153437839148731907005911675718, 8.874352363872754096831861654591, 10.05203871513710161884265326338, 10.99466147835650360485252738009, 11.76558806192599677137636172260