Properties

Label 4-2e2-1.1-c49e2-0-0
Degree $4$
Conductor $4$
Sign $1$
Analytic cond. $924.965$
Root an. cond. $5.51482$
Motivic weight $49$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $2$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3.35e7·2-s + 2.81e11·3-s + 8.44e14·4-s + 8.31e16·5-s − 9.43e18·6-s − 4.32e20·7-s − 1.88e22·8-s − 2.54e23·9-s − 2.79e24·10-s − 2.50e24·11-s + 2.37e26·12-s − 1.67e27·13-s + 1.45e28·14-s + 2.33e28·15-s + 3.96e29·16-s + 1.24e30·17-s + 8.52e30·18-s + 3.17e31·19-s + 7.02e31·20-s − 1.21e32·21-s + 8.40e31·22-s − 2.87e33·23-s − 5.30e33·24-s − 1.02e34·25-s + 5.61e34·26-s − 9.78e34·27-s − 3.65e35·28-s + ⋯
L(s)  = 1  − 1.41·2-s + 0.574·3-s + 3/2·4-s + 0.624·5-s − 0.812·6-s − 0.853·7-s − 1.41·8-s − 1.06·9-s − 0.882·10-s − 0.0766·11-s + 0.861·12-s − 0.855·13-s + 1.20·14-s + 0.358·15-s + 5/4·16-s + 0.887·17-s + 1.50·18-s + 1.48·19-s + 0.936·20-s − 0.490·21-s + 0.108·22-s − 1.24·23-s − 0.812·24-s − 0.575·25-s + 1.20·26-s − 0.835·27-s − 1.27·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 4 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(50-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4 ^{s/2} \, \Gamma_{\C}(s+49/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(4\)    =    \(2^{2}\)
Sign: $1$
Analytic conductor: \(924.965\)
Root analytic conductor: \(5.51482\)
Motivic weight: \(49\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(2\)
Selberg data: \((4,\ 4,\ (\ :49/2, 49/2),\ 1)\)

Particular Values

\(L(25)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{51}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_1$ \( ( 1 + p^{24} T )^{2} \)
good3$D_{4}$ \( 1 - 10409299096 p^{3} T + 208960133642359634 p^{13} T^{2} - 10409299096 p^{52} T^{3} + p^{98} T^{4} \)
5$D_{4}$ \( 1 - 665396249460348 p^{3} T + \)\(43\!\cdots\!26\)\( p^{8} T^{2} - 665396249460348 p^{52} T^{3} + p^{98} T^{4} \)
7$D_{4}$ \( 1 + \)\(43\!\cdots\!36\)\( T + \)\(96\!\cdots\!66\)\( p^{3} T^{2} + \)\(43\!\cdots\!36\)\( p^{49} T^{3} + p^{98} T^{4} \)
11$D_{4}$ \( 1 + \)\(22\!\cdots\!76\)\( p T + \)\(47\!\cdots\!06\)\( p^{5} T^{2} + \)\(22\!\cdots\!76\)\( p^{50} T^{3} + p^{98} T^{4} \)
13$D_{4}$ \( 1 + \)\(16\!\cdots\!28\)\( T + \)\(26\!\cdots\!18\)\( p^{2} T^{2} + \)\(16\!\cdots\!28\)\( p^{49} T^{3} + p^{98} T^{4} \)
17$D_{4}$ \( 1 - \)\(73\!\cdots\!92\)\( p T + \)\(77\!\cdots\!86\)\( p^{3} T^{2} - \)\(73\!\cdots\!92\)\( p^{50} T^{3} + p^{98} T^{4} \)
19$D_{4}$ \( 1 - \)\(31\!\cdots\!20\)\( T + \)\(31\!\cdots\!78\)\( p^{2} T^{2} - \)\(31\!\cdots\!20\)\( p^{49} T^{3} + p^{98} T^{4} \)
23$D_{4}$ \( 1 + \)\(12\!\cdots\!36\)\( p T + \)\(71\!\cdots\!66\)\( p^{3} T^{2} + \)\(12\!\cdots\!36\)\( p^{50} T^{3} + p^{98} T^{4} \)
29$D_{4}$ \( 1 + \)\(11\!\cdots\!80\)\( T + \)\(34\!\cdots\!22\)\( p T^{2} + \)\(11\!\cdots\!80\)\( p^{49} T^{3} + p^{98} T^{4} \)
31$D_{4}$ \( 1 + \)\(71\!\cdots\!96\)\( T + \)\(11\!\cdots\!66\)\( p T^{2} + \)\(71\!\cdots\!96\)\( p^{49} T^{3} + p^{98} T^{4} \)
37$D_{4}$ \( 1 + \)\(45\!\cdots\!16\)\( T + \)\(35\!\cdots\!14\)\( p T^{2} + \)\(45\!\cdots\!16\)\( p^{49} T^{3} + p^{98} T^{4} \)
41$D_{4}$ \( 1 - \)\(17\!\cdots\!04\)\( p T + \)\(18\!\cdots\!66\)\( p^{2} T^{2} - \)\(17\!\cdots\!04\)\( p^{50} T^{3} + p^{98} T^{4} \)
43$D_{4}$ \( 1 - \)\(53\!\cdots\!24\)\( p T + \)\(18\!\cdots\!58\)\( p^{2} T^{2} - \)\(53\!\cdots\!24\)\( p^{50} T^{3} + p^{98} T^{4} \)
47$D_{4}$ \( 1 + \)\(25\!\cdots\!68\)\( p T + \)\(49\!\cdots\!82\)\( p^{2} T^{2} + \)\(25\!\cdots\!68\)\( p^{50} T^{3} + p^{98} T^{4} \)
53$D_{4}$ \( 1 + \)\(39\!\cdots\!68\)\( T + \)\(99\!\cdots\!22\)\( T^{2} + \)\(39\!\cdots\!68\)\( p^{49} T^{3} + p^{98} T^{4} \)
59$D_{4}$ \( 1 - \)\(21\!\cdots\!40\)\( T + \)\(46\!\cdots\!78\)\( T^{2} - \)\(21\!\cdots\!40\)\( p^{49} T^{3} + p^{98} T^{4} \)
61$D_{4}$ \( 1 - \)\(57\!\cdots\!04\)\( T + \)\(27\!\cdots\!86\)\( T^{2} - \)\(57\!\cdots\!04\)\( p^{49} T^{3} + p^{98} T^{4} \)
67$D_{4}$ \( 1 + \)\(16\!\cdots\!48\)\( p T + \)\(79\!\cdots\!58\)\( T^{2} + \)\(16\!\cdots\!48\)\( p^{50} T^{3} + p^{98} T^{4} \)
71$D_{4}$ \( 1 + \)\(25\!\cdots\!16\)\( T + \)\(89\!\cdots\!26\)\( T^{2} + \)\(25\!\cdots\!16\)\( p^{49} T^{3} + p^{98} T^{4} \)
73$D_{4}$ \( 1 + \)\(97\!\cdots\!88\)\( T + \)\(57\!\cdots\!62\)\( T^{2} + \)\(97\!\cdots\!88\)\( p^{49} T^{3} + p^{98} T^{4} \)
79$D_{4}$ \( 1 + \)\(16\!\cdots\!60\)\( T + \)\(12\!\cdots\!38\)\( T^{2} + \)\(16\!\cdots\!60\)\( p^{49} T^{3} + p^{98} T^{4} \)
83$D_{4}$ \( 1 + \)\(24\!\cdots\!28\)\( T + \)\(64\!\cdots\!02\)\( T^{2} + \)\(24\!\cdots\!28\)\( p^{49} T^{3} + p^{98} T^{4} \)
89$D_{4}$ \( 1 - \)\(10\!\cdots\!80\)\( T + \)\(80\!\cdots\!18\)\( T^{2} - \)\(10\!\cdots\!80\)\( p^{49} T^{3} + p^{98} T^{4} \)
97$D_{4}$ \( 1 - \)\(86\!\cdots\!24\)\( T + \)\(29\!\cdots\!78\)\( T^{2} - \)\(86\!\cdots\!24\)\( p^{49} T^{3} + p^{98} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−16.32505129086880965855091484654, −16.07009390458362862232076917801, −14.56332069409854110068722960153, −14.21704650252904920939280029947, −12.88315956060479463436269766843, −11.95371952249700270094874721146, −11.03093205288358349022703629731, −9.966871464894000697832937261643, −9.413814330920998732272832278168, −8.975210981503701117147819781525, −7.58890240033698295300761005100, −7.47970327921472559890882513517, −5.80957635182560215543708673587, −5.70393353877030362855966441639, −3.61361412423275293026603192528, −2.93329524727049682992831078618, −2.16510977081162991618350910538, −1.40570036687269561729357193042, 0, 0, 1.40570036687269561729357193042, 2.16510977081162991618350910538, 2.93329524727049682992831078618, 3.61361412423275293026603192528, 5.70393353877030362855966441639, 5.80957635182560215543708673587, 7.47970327921472559890882513517, 7.58890240033698295300761005100, 8.975210981503701117147819781525, 9.413814330920998732272832278168, 9.966871464894000697832937261643, 11.03093205288358349022703629731, 11.95371952249700270094874721146, 12.88315956060479463436269766843, 14.21704650252904920939280029947, 14.56332069409854110068722960153, 16.07009390458362862232076917801, 16.32505129086880965855091484654

Graph of the $Z$-function along the critical line