L(s) = 1 | + (−0.809 + 0.587i)5-s + (−1.26 − 3.88i)7-s + (2.91 − 1.57i)11-s + (−5.72 − 4.15i)13-s + (0.657 − 0.477i)17-s + (−2.56 + 7.90i)19-s − 7.02·23-s + (0.309 − 0.951i)25-s + (2.19 + 6.75i)29-s + (3.69 + 2.68i)31-s + (3.30 + 2.40i)35-s + (−0.971 − 2.98i)37-s + (−1.96 + 6.05i)41-s + 1.35·43-s + (−0.858 + 2.64i)47-s + ⋯ |
L(s) = 1 | + (−0.361 + 0.262i)5-s + (−0.477 − 1.46i)7-s + (0.880 − 0.474i)11-s + (−1.58 − 1.15i)13-s + (0.159 − 0.115i)17-s + (−0.588 + 1.81i)19-s − 1.46·23-s + (0.0618 − 0.190i)25-s + (0.407 + 1.25i)29-s + (0.663 + 0.482i)31-s + (0.558 + 0.405i)35-s + (−0.159 − 0.491i)37-s + (−0.307 + 0.946i)41-s + 0.206·43-s + (−0.125 + 0.385i)47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1980 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.739 - 0.673i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1980 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.739 - 0.673i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.1287900768\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.1287900768\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 5 | \( 1 + (0.809 - 0.587i)T \) |
| 11 | \( 1 + (-2.91 + 1.57i)T \) |
good | 7 | \( 1 + (1.26 + 3.88i)T + (-5.66 + 4.11i)T^{2} \) |
| 13 | \( 1 + (5.72 + 4.15i)T + (4.01 + 12.3i)T^{2} \) |
| 17 | \( 1 + (-0.657 + 0.477i)T + (5.25 - 16.1i)T^{2} \) |
| 19 | \( 1 + (2.56 - 7.90i)T + (-15.3 - 11.1i)T^{2} \) |
| 23 | \( 1 + 7.02T + 23T^{2} \) |
| 29 | \( 1 + (-2.19 - 6.75i)T + (-23.4 + 17.0i)T^{2} \) |
| 31 | \( 1 + (-3.69 - 2.68i)T + (9.57 + 29.4i)T^{2} \) |
| 37 | \( 1 + (0.971 + 2.98i)T + (-29.9 + 21.7i)T^{2} \) |
| 41 | \( 1 + (1.96 - 6.05i)T + (-33.1 - 24.0i)T^{2} \) |
| 43 | \( 1 - 1.35T + 43T^{2} \) |
| 47 | \( 1 + (0.858 - 2.64i)T + (-38.0 - 27.6i)T^{2} \) |
| 53 | \( 1 + (-5.62 - 4.08i)T + (16.3 + 50.4i)T^{2} \) |
| 59 | \( 1 + (-1.34 - 4.12i)T + (-47.7 + 34.6i)T^{2} \) |
| 61 | \( 1 + (-8.12 + 5.90i)T + (18.8 - 58.0i)T^{2} \) |
| 67 | \( 1 + 3.26T + 67T^{2} \) |
| 71 | \( 1 + (7.22 - 5.24i)T + (21.9 - 67.5i)T^{2} \) |
| 73 | \( 1 + (-0.649 - 1.99i)T + (-59.0 + 42.9i)T^{2} \) |
| 79 | \( 1 + (10.1 + 7.38i)T + (24.4 + 75.1i)T^{2} \) |
| 83 | \( 1 + (11.3 - 8.21i)T + (25.6 - 78.9i)T^{2} \) |
| 89 | \( 1 + 0.800T + 89T^{2} \) |
| 97 | \( 1 + (3.90 + 2.83i)T + (29.9 + 92.2i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.815673059705510720935205841432, −8.497440081355589834959183700599, −7.81776256077956096994304270373, −7.19122061813701083586623432535, −6.43470359384137631472929698868, −5.54025563537647664993342925948, −4.33953443711286487759470240696, −3.74001213797885012220629025380, −2.86612916062127367389833051668, −1.28646645614749908221299166502,
0.04681583418460220292706391386, 2.08050131254427150981638929134, 2.61538522672079041266212167956, 4.11197745023772250657486716019, 4.68165429885818806907717276965, 5.69192948815267135211417384013, 6.59663930630293380332585256597, 7.13548749500909426065838134116, 8.285098359487690797541175901304, 8.932992121308093096134707923312