L(s) = 1 | + (−1.34 − 0.437i)2-s + (1.61 + 1.17i)4-s + (−5.26 + 1.71i)5-s + (1.50 + 1.09i)7-s + (−1.66 − 2.28i)8-s + 7.83·10-s + (4.17 − 10.1i)11-s + (5.69 − 17.5i)13-s + (−1.54 − 2.12i)14-s + (1.23 + 3.80i)16-s + (−8.28 + 2.69i)17-s + (7.24 − 5.26i)19-s + (−10.5 − 3.42i)20-s + (−10.0 + 11.8i)22-s − 32.8i·23-s + ⋯ |
L(s) = 1 | + (−0.672 − 0.218i)2-s + (0.404 + 0.293i)4-s + (−1.05 + 0.342i)5-s + (0.215 + 0.156i)7-s + (−0.207 − 0.286i)8-s + 0.783·10-s + (0.379 − 0.925i)11-s + (0.437 − 1.34i)13-s + (−0.110 − 0.152i)14-s + (0.0772 + 0.237i)16-s + (−0.487 + 0.158i)17-s + (0.381 − 0.277i)19-s + (−0.526 − 0.171i)20-s + (−0.457 + 0.539i)22-s − 1.42i·23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 198 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.0423 + 0.999i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 198 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (-0.0423 + 0.999i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(0.513599 - 0.535845i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.513599 - 0.535845i\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (1.34 + 0.437i)T \) |
| 3 | \( 1 \) |
| 11 | \( 1 + (-4.17 + 10.1i)T \) |
good | 5 | \( 1 + (5.26 - 1.71i)T + (20.2 - 14.6i)T^{2} \) |
| 7 | \( 1 + (-1.50 - 1.09i)T + (15.1 + 46.6i)T^{2} \) |
| 13 | \( 1 + (-5.69 + 17.5i)T + (-136. - 99.3i)T^{2} \) |
| 17 | \( 1 + (8.28 - 2.69i)T + (233. - 169. i)T^{2} \) |
| 19 | \( 1 + (-7.24 + 5.26i)T + (111. - 343. i)T^{2} \) |
| 23 | \( 1 + 32.8iT - 529T^{2} \) |
| 29 | \( 1 + (-16.6 + 22.9i)T + (-259. - 799. i)T^{2} \) |
| 31 | \( 1 + (-5.96 + 18.3i)T + (-777. - 564. i)T^{2} \) |
| 37 | \( 1 + (46.8 + 34.0i)T + (423. + 1.30e3i)T^{2} \) |
| 41 | \( 1 + (-3.35 - 4.62i)T + (-519. + 1.59e3i)T^{2} \) |
| 43 | \( 1 + 21.0T + 1.84e3T^{2} \) |
| 47 | \( 1 + (-35.0 - 48.2i)T + (-682. + 2.10e3i)T^{2} \) |
| 53 | \( 1 + (-77.9 - 25.3i)T + (2.27e3 + 1.65e3i)T^{2} \) |
| 59 | \( 1 + (2.41 - 3.32i)T + (-1.07e3 - 3.31e3i)T^{2} \) |
| 61 | \( 1 + (-15.5 - 47.9i)T + (-3.01e3 + 2.18e3i)T^{2} \) |
| 67 | \( 1 + 17.7T + 4.48e3T^{2} \) |
| 71 | \( 1 + (35.1 - 11.4i)T + (4.07e3 - 2.96e3i)T^{2} \) |
| 73 | \( 1 + (-24.5 - 17.8i)T + (1.64e3 + 5.06e3i)T^{2} \) |
| 79 | \( 1 + (43.6 - 134. i)T + (-5.04e3 - 3.66e3i)T^{2} \) |
| 83 | \( 1 + (45.4 - 14.7i)T + (5.57e3 - 4.04e3i)T^{2} \) |
| 89 | \( 1 + 75.3iT - 7.92e3T^{2} \) |
| 97 | \( 1 + (-34.2 + 105. i)T + (-7.61e3 - 5.53e3i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.72519518391858612234045604435, −11.02971392556122570176869935767, −10.22794694343441195660041984321, −8.717422379370542138161008713060, −8.184537689430409283253527696763, −7.09845147677082215773491193519, −5.82459796907337514707687940608, −4.03832738887571182198133645377, −2.83925010295777894952511655985, −0.56134494158833152312152541697,
1.57317665340748370638778821125, 3.77991489870722942997087178102, 4.94476908916536295403272520078, 6.69218185742408715883683417580, 7.43559261873960090623077047023, 8.539174312827126333503346675595, 9.331976626417655469495596504683, 10.49307340439030543529969829361, 11.76128845717478106932408322324, 11.95021701436283489734468447977