L(s) = 1 | + (−0.831 + 1.14i)2-s + (−0.618 − 1.90i)4-s + (−2.92 − 4.02i)5-s + (2.20 + 6.78i)7-s + (2.68 + 0.874i)8-s + 7.02·10-s + (−9.66 + 5.24i)11-s + (17.3 + 12.5i)13-s + (−9.60 − 3.11i)14-s + (−3.23 + 2.35i)16-s + (15.6 + 21.5i)17-s + (−3.99 + 12.2i)19-s + (−5.84 + 8.04i)20-s + (2.03 − 15.4i)22-s + 4.58i·23-s + ⋯ |
L(s) = 1 | + (−0.415 + 0.572i)2-s + (−0.154 − 0.475i)4-s + (−0.584 − 0.804i)5-s + (0.315 + 0.969i)7-s + (0.336 + 0.109i)8-s + 0.702·10-s + (−0.879 + 0.476i)11-s + (1.33 + 0.967i)13-s + (−0.685 − 0.222i)14-s + (−0.202 + 0.146i)16-s + (0.922 + 1.26i)17-s + (−0.210 + 0.646i)19-s + (−0.292 + 0.402i)20-s + (0.0926 − 0.701i)22-s + 0.199i·23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 198 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.217 - 0.976i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 198 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (-0.217 - 0.976i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(0.600552 + 0.749235i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.600552 + 0.749235i\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.831 - 1.14i)T \) |
| 3 | \( 1 \) |
| 11 | \( 1 + (9.66 - 5.24i)T \) |
good | 5 | \( 1 + (2.92 + 4.02i)T + (-7.72 + 23.7i)T^{2} \) |
| 7 | \( 1 + (-2.20 - 6.78i)T + (-39.6 + 28.8i)T^{2} \) |
| 13 | \( 1 + (-17.3 - 12.5i)T + (52.2 + 160. i)T^{2} \) |
| 17 | \( 1 + (-15.6 - 21.5i)T + (-89.3 + 274. i)T^{2} \) |
| 19 | \( 1 + (3.99 - 12.2i)T + (-292. - 212. i)T^{2} \) |
| 23 | \( 1 - 4.58iT - 529T^{2} \) |
| 29 | \( 1 + (33.2 - 10.7i)T + (680. - 494. i)T^{2} \) |
| 31 | \( 1 + (19.2 + 13.9i)T + (296. + 913. i)T^{2} \) |
| 37 | \( 1 + (-16.0 - 49.3i)T + (-1.10e3 + 804. i)T^{2} \) |
| 41 | \( 1 + (-30.2 - 9.82i)T + (1.35e3 + 988. i)T^{2} \) |
| 43 | \( 1 + 32.0T + 1.84e3T^{2} \) |
| 47 | \( 1 + (-30.5 - 9.91i)T + (1.78e3 + 1.29e3i)T^{2} \) |
| 53 | \( 1 + (-28.0 + 38.6i)T + (-868. - 2.67e3i)T^{2} \) |
| 59 | \( 1 + (-21.3 + 6.93i)T + (2.81e3 - 2.04e3i)T^{2} \) |
| 61 | \( 1 + (-26.7 + 19.4i)T + (1.14e3 - 3.53e3i)T^{2} \) |
| 67 | \( 1 + 109.T + 4.48e3T^{2} \) |
| 71 | \( 1 + (0.836 + 1.15i)T + (-1.55e3 + 4.79e3i)T^{2} \) |
| 73 | \( 1 + (42.7 + 131. i)T + (-4.31e3 + 3.13e3i)T^{2} \) |
| 79 | \( 1 + (-44.9 - 32.6i)T + (1.92e3 + 5.93e3i)T^{2} \) |
| 83 | \( 1 + (-94.8 - 130. i)T + (-2.12e3 + 6.55e3i)T^{2} \) |
| 89 | \( 1 + 31.8iT - 7.92e3T^{2} \) |
| 97 | \( 1 + (-105. - 76.6i)T + (2.90e3 + 8.94e3i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.50965242991597922013367623661, −11.60576139174738547681435811421, −10.48907147748105931044623191835, −9.239468053711752661012964970296, −8.404589653858823163572120243865, −7.80043319391670910241451088261, −6.20773282505439419004063609306, −5.28074980568643313744539004194, −3.95934768453267323787061246708, −1.66114020643892750966011111990,
0.67519066965641040257986650499, 2.91817110038437092985339235081, 3.88099636950881234189511305513, 5.55426225953537601857654510416, 7.28646311770203875713710628424, 7.76608820513194273389623683385, 9.011257204287142381085725593115, 10.44934840730535304754644248435, 10.84016599856608953025187296225, 11.59541882482515358102711368302