L(s) = 1 | + (−0.309 + 0.951i)2-s + (−0.809 − 0.587i)4-s + (−1.11 − 3.44i)5-s + (3.11 + 2.26i)7-s + (0.809 − 0.587i)8-s + 3.61·10-s + (3.23 − 0.726i)11-s + (2 − 6.15i)13-s + (−3.11 + 2.26i)14-s + (0.309 + 0.951i)16-s + (1 + 3.07i)17-s + (−1.61 + 1.17i)19-s + (−1.11 + 3.44i)20-s + (−0.309 + 3.30i)22-s − 2.76·23-s + ⋯ |
L(s) = 1 | + (−0.218 + 0.672i)2-s + (−0.404 − 0.293i)4-s + (−0.499 − 1.53i)5-s + (1.17 + 0.856i)7-s + (0.286 − 0.207i)8-s + 1.14·10-s + (0.975 − 0.219i)11-s + (0.554 − 1.70i)13-s + (−0.833 + 0.605i)14-s + (0.0772 + 0.237i)16-s + (0.242 + 0.746i)17-s + (−0.371 + 0.269i)19-s + (−0.249 + 0.769i)20-s + (−0.0658 + 0.704i)22-s − 0.576·23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 198 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.998 + 0.0475i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 198 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.998 + 0.0475i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.08925 - 0.0259008i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.08925 - 0.0259008i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.309 - 0.951i)T \) |
| 3 | \( 1 \) |
| 11 | \( 1 + (-3.23 + 0.726i)T \) |
good | 5 | \( 1 + (1.11 + 3.44i)T + (-4.04 + 2.93i)T^{2} \) |
| 7 | \( 1 + (-3.11 - 2.26i)T + (2.16 + 6.65i)T^{2} \) |
| 13 | \( 1 + (-2 + 6.15i)T + (-10.5 - 7.64i)T^{2} \) |
| 17 | \( 1 + (-1 - 3.07i)T + (-13.7 + 9.99i)T^{2} \) |
| 19 | \( 1 + (1.61 - 1.17i)T + (5.87 - 18.0i)T^{2} \) |
| 23 | \( 1 + 2.76T + 23T^{2} \) |
| 29 | \( 1 + (-0.309 - 0.224i)T + (8.96 + 27.5i)T^{2} \) |
| 31 | \( 1 + (-0.0450 + 0.138i)T + (-25.0 - 18.2i)T^{2} \) |
| 37 | \( 1 + (3 + 2.17i)T + (11.4 + 35.1i)T^{2} \) |
| 41 | \( 1 + (5.47 - 3.97i)T + (12.6 - 38.9i)T^{2} \) |
| 43 | \( 1 + 43T^{2} \) |
| 47 | \( 1 + (-3.85 + 2.80i)T + (14.5 - 44.6i)T^{2} \) |
| 53 | \( 1 + (2.89 - 8.92i)T + (-42.8 - 31.1i)T^{2} \) |
| 59 | \( 1 + (-9.97 - 7.24i)T + (18.2 + 56.1i)T^{2} \) |
| 61 | \( 1 + (-0.854 - 2.62i)T + (-49.3 + 35.8i)T^{2} \) |
| 67 | \( 1 + 10.9T + 67T^{2} \) |
| 71 | \( 1 + (-0.236 - 0.726i)T + (-57.4 + 41.7i)T^{2} \) |
| 73 | \( 1 + (-1.92 - 1.40i)T + (22.5 + 69.4i)T^{2} \) |
| 79 | \( 1 + (2.20 - 6.79i)T + (-63.9 - 46.4i)T^{2} \) |
| 83 | \( 1 + (2.40 + 7.41i)T + (-67.1 + 48.7i)T^{2} \) |
| 89 | \( 1 - 6.18T + 89T^{2} \) |
| 97 | \( 1 + (2.20 - 6.79i)T + (-78.4 - 57.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.42757910320083668857844368751, −11.73980092392983942308439195381, −10.43928618868272702320049080610, −8.963042551721712730657385321814, −8.426306246754472259870341099665, −7.83924838666534682210502901557, −5.93485857743465800108987064165, −5.20529226646815673217827797006, −4.02120569378425752305914967712, −1.29300898395957009285834915342,
1.86771694204349570500830798011, 3.61951541858502435670605095092, 4.47547007380972745810882099586, 6.64720555501073749859461749189, 7.31037755786952683107297341345, 8.521116798764708632627527910969, 9.767216732228450968755224081442, 10.81024894927618840005403405194, 11.42690647583777444648603509417, 11.91634026248630549200986986147