Properties

Label 6-1976e3-1976.493-c0e3-0-0
Degree $6$
Conductor $7715442176$
Sign $1$
Analytic cond. $0.959030$
Root an. cond. $0.993052$
Motivic weight $0$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3·2-s − 3-s + 6·4-s + 5-s + 3·6-s − 10·8-s − 3·10-s + 11-s − 6·12-s + 3·13-s − 15-s + 15·16-s − 17-s − 3·19-s + 6·20-s − 3·22-s − 23-s + 10·24-s − 9·26-s − 29-s + 3·30-s + 31-s − 21·32-s − 33-s + 3·34-s + 9·38-s − 3·39-s + ⋯
L(s)  = 1  − 3·2-s − 3-s + 6·4-s + 5-s + 3·6-s − 10·8-s − 3·10-s + 11-s − 6·12-s + 3·13-s − 15-s + 15·16-s − 17-s − 3·19-s + 6·20-s − 3·22-s − 23-s + 10·24-s − 9·26-s − 29-s + 3·30-s + 31-s − 21·32-s − 33-s + 3·34-s + 9·38-s − 3·39-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{9} \cdot 13^{3} \cdot 19^{3}\right)^{s/2} \, \Gamma_{\C}(s)^{3} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{9} \cdot 13^{3} \cdot 19^{3}\right)^{s/2} \, \Gamma_{\C}(s)^{3} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(6\)
Conductor: \(2^{9} \cdot 13^{3} \cdot 19^{3}\)
Sign: $1$
Analytic conductor: \(0.959030\)
Root analytic conductor: \(0.993052\)
Motivic weight: \(0\)
Rational: yes
Arithmetic: yes
Character: induced by $\chi_{1976} (493, \cdot )$
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((6,\ 2^{9} \cdot 13^{3} \cdot 19^{3} ,\ ( \ : 0, 0, 0 ),\ 1 )\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(0.2570148661\)
\(L(\frac12)\) \(\approx\) \(0.2570148661\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_1$ \( ( 1 + T )^{3} \)
13$C_1$ \( ( 1 - T )^{3} \)
19$C_1$ \( ( 1 + T )^{3} \)
good3$C_6$ \( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} \)
5$C_6$ \( 1 - T + T^{2} - T^{3} + T^{4} - T^{5} + T^{6} \)
7$C_1$$\times$$C_1$ \( ( 1 - T )^{3}( 1 + T )^{3} \)
11$C_6$ \( 1 - T + T^{2} - T^{3} + T^{4} - T^{5} + T^{6} \)
17$C_6$ \( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} \)
23$C_6$ \( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} \)
29$C_6$ \( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} \)
31$C_6$ \( 1 - T + T^{2} - T^{3} + T^{4} - T^{5} + T^{6} \)
37$C_1$$\times$$C_1$ \( ( 1 - T )^{3}( 1 + T )^{3} \)
41$C_6$ \( 1 - T + T^{2} - T^{3} + T^{4} - T^{5} + T^{6} \)
43$C_1$$\times$$C_1$ \( ( 1 - T )^{3}( 1 + T )^{3} \)
47$C_1$$\times$$C_1$ \( ( 1 - T )^{3}( 1 + T )^{3} \)
53$C_6$ \( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} \)
59$C_1$$\times$$C_1$ \( ( 1 - T )^{3}( 1 + T )^{3} \)
61$C_1$$\times$$C_1$ \( ( 1 - T )^{3}( 1 + T )^{3} \)
67$C_1$$\times$$C_1$ \( ( 1 - T )^{3}( 1 + T )^{3} \)
71$C_6$ \( 1 - T + T^{2} - T^{3} + T^{4} - T^{5} + T^{6} \)
73$C_1$$\times$$C_1$ \( ( 1 - T )^{3}( 1 + T )^{3} \)
79$C_1$$\times$$C_1$ \( ( 1 - T )^{3}( 1 + T )^{3} \)
83$C_6$ \( 1 - T + T^{2} - T^{3} + T^{4} - T^{5} + T^{6} \)
89$C_6$ \( 1 - T + T^{2} - T^{3} + T^{4} - T^{5} + T^{6} \)
97$C_6$ \( 1 - T + T^{2} - T^{3} + T^{4} - T^{5} + T^{6} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{6} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.597372410334076705968472546740, −8.171115061881692281575825803260, −8.095694940412692997249916302713, −7.65637246570846374027281377735, −7.30359458512052013816420203348, −6.98944973124307986850343645572, −6.71082982267472174709157653771, −6.33779067823258511727055989275, −6.32617909256098070915864189259, −6.24411089302666578877808506691, −5.85252096952130247247296470975, −5.70719120903126176951762142495, −5.63977265835937661082218268570, −4.86290430349759325085884054619, −4.36917275450275040788806192295, −3.86165040315568452594110585376, −3.85124640996981290859089131850, −3.54130671427308571189024735141, −2.87932520979675273410206662979, −2.41777833009515074908332579348, −2.12337886594025453399754603529, −1.98184637677978698621991281539, −1.53297820829920470050134204519, −1.11548300461909459115785985143, −0.58978713185538617416976795906, 0.58978713185538617416976795906, 1.11548300461909459115785985143, 1.53297820829920470050134204519, 1.98184637677978698621991281539, 2.12337886594025453399754603529, 2.41777833009515074908332579348, 2.87932520979675273410206662979, 3.54130671427308571189024735141, 3.85124640996981290859089131850, 3.86165040315568452594110585376, 4.36917275450275040788806192295, 4.86290430349759325085884054619, 5.63977265835937661082218268570, 5.70719120903126176951762142495, 5.85252096952130247247296470975, 6.24411089302666578877808506691, 6.32617909256098070915864189259, 6.33779067823258511727055989275, 6.71082982267472174709157653771, 6.98944973124307986850343645572, 7.30359458512052013816420203348, 7.65637246570846374027281377735, 8.095694940412692997249916302713, 8.171115061881692281575825803260, 8.597372410334076705968472546740

Graph of the $Z$-function along the critical line