L(s) = 1 | + (85.0 − 49.0i)3-s + (951. + 549. i)5-s + (1.54e3 − 2.66e3i)9-s + (8.37e3 + 1.45e4i)11-s − 1.21e4i·13-s + 1.07e5·15-s + (−9.20e4 + 5.31e4i)17-s + (3.38e4 + 1.95e4i)19-s + (2.17e5 − 3.76e5i)23-s + (4.08e5 + 7.07e5i)25-s + 3.41e5i·27-s + 7.52e5·29-s + (6.11e5 − 3.53e5i)31-s + (1.42e6 + 8.22e5i)33-s + (−1.25e6 + 2.17e6i)37-s + ⋯ |
L(s) = 1 | + (1.04 − 0.606i)3-s + (1.52 + 0.878i)5-s + (0.234 − 0.406i)9-s + (0.571 + 0.990i)11-s − 0.426i·13-s + 2.13·15-s + (−1.10 + 0.636i)17-s + (0.259 + 0.150i)19-s + (0.777 − 1.34i)23-s + (1.04 + 1.81i)25-s + 0.642i·27-s + 1.06·29-s + (0.662 − 0.382i)31-s + (1.20 + 0.693i)33-s + (−0.671 + 1.16i)37-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 196 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.832 - 0.553i)\, \overline{\Lambda}(9-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 196 ^{s/2} \, \Gamma_{\C}(s+4) \, L(s)\cr =\mathstrut & (0.832 - 0.553i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{9}{2})\) |
\(\approx\) |
\(4.522459375\) |
\(L(\frac12)\) |
\(\approx\) |
\(4.522459375\) |
\(L(5)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 7 | \( 1 \) |
good | 3 | \( 1 + (-85.0 + 49.0i)T + (3.28e3 - 5.68e3i)T^{2} \) |
| 5 | \( 1 + (-951. - 549. i)T + (1.95e5 + 3.38e5i)T^{2} \) |
| 11 | \( 1 + (-8.37e3 - 1.45e4i)T + (-1.07e8 + 1.85e8i)T^{2} \) |
| 13 | \( 1 + 1.21e4iT - 8.15e8T^{2} \) |
| 17 | \( 1 + (9.20e4 - 5.31e4i)T + (3.48e9 - 6.04e9i)T^{2} \) |
| 19 | \( 1 + (-3.38e4 - 1.95e4i)T + (8.49e9 + 1.47e10i)T^{2} \) |
| 23 | \( 1 + (-2.17e5 + 3.76e5i)T + (-3.91e10 - 6.78e10i)T^{2} \) |
| 29 | \( 1 - 7.52e5T + 5.00e11T^{2} \) |
| 31 | \( 1 + (-6.11e5 + 3.53e5i)T + (4.26e11 - 7.38e11i)T^{2} \) |
| 37 | \( 1 + (1.25e6 - 2.17e6i)T + (-1.75e12 - 3.04e12i)T^{2} \) |
| 41 | \( 1 - 3.11e6iT - 7.98e12T^{2} \) |
| 43 | \( 1 - 1.65e6T + 1.16e13T^{2} \) |
| 47 | \( 1 + (5.50e6 + 3.17e6i)T + (1.19e13 + 2.06e13i)T^{2} \) |
| 53 | \( 1 + (-2.79e6 - 4.83e6i)T + (-3.11e13 + 5.39e13i)T^{2} \) |
| 59 | \( 1 + (1.66e6 - 9.62e5i)T + (7.34e13 - 1.27e14i)T^{2} \) |
| 61 | \( 1 + (1.54e7 + 8.93e6i)T + (9.58e13 + 1.66e14i)T^{2} \) |
| 67 | \( 1 + (-5.09e5 - 8.82e5i)T + (-2.03e14 + 3.51e14i)T^{2} \) |
| 71 | \( 1 - 2.80e6T + 6.45e14T^{2} \) |
| 73 | \( 1 + (-1.40e7 + 8.13e6i)T + (4.03e14 - 6.98e14i)T^{2} \) |
| 79 | \( 1 + (-2.90e7 + 5.03e7i)T + (-7.58e14 - 1.31e15i)T^{2} \) |
| 83 | \( 1 - 6.45e7iT - 2.25e15T^{2} \) |
| 89 | \( 1 + (-7.07e7 - 4.08e7i)T + (1.96e15 + 3.40e15i)T^{2} \) |
| 97 | \( 1 + 9.95e7iT - 7.83e15T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.84381763975282933834327443678, −10.03108225131709069584041361691, −9.141495365334713407927049480035, −8.165772324790379265236088221991, −6.83788448577369816227956718203, −6.37645319392393459508339826472, −4.77470429648566518916178646279, −3.02192988940767209442753051606, −2.27975900949082354770225852672, −1.42465102677019194426006188954,
0.899816008033436830350652509589, 2.09547902663972726843000117938, 3.20545188326502185666036562368, 4.53444978358545462443571951486, 5.59888289013724543381518285147, 6.72043069236567868129768109690, 8.424805285709654516988658419112, 9.198916384114912474461525522686, 9.421906647714248702423705401057, 10.69021296825603700923737131852