Properties

Label 4-14e4-1.1-c4e2-0-1
Degree $4$
Conductor $38416$
Sign $1$
Analytic cond. $410.488$
Root an. cond. $4.50116$
Motivic weight $4$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 12·3-s + 36·5-s + 15·9-s − 18·11-s − 432·15-s + 720·17-s + 156·19-s − 738·23-s + 239·25-s + 396·27-s − 1.69e3·29-s − 2.01e3·31-s + 216·33-s − 2.38e3·37-s − 5.02e3·43-s + 540·45-s − 5.90e3·47-s − 8.64e3·51-s + 270·53-s − 648·55-s − 1.87e3·57-s + 5.43e3·59-s + 1.12e4·61-s − 2.45e3·67-s + 8.85e3·69-s − 6.30e3·71-s − 408·73-s + ⋯
L(s)  = 1  − 4/3·3-s + 1.43·5-s + 5/27·9-s − 0.148·11-s − 1.91·15-s + 2.49·17-s + 0.432·19-s − 1.39·23-s + 0.382·25-s + 0.543·27-s − 2.01·29-s − 2.09·31-s + 0.198·33-s − 1.74·37-s − 2.71·43-s + 4/15·45-s − 2.67·47-s − 3.32·51-s + 0.0961·53-s − 0.214·55-s − 0.576·57-s + 1.56·59-s + 3.02·61-s − 0.545·67-s + 1.86·69-s − 1.24·71-s − 0.0765·73-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 38416 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(5-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 38416 ^{s/2} \, \Gamma_{\C}(s+2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(38416\)    =    \(2^{4} \cdot 7^{4}\)
Sign: $1$
Analytic conductor: \(410.488\)
Root analytic conductor: \(4.50116\)
Motivic weight: \(4\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 38416,\ (\ :2, 2),\ 1)\)

Particular Values

\(L(\frac{5}{2})\) \(\approx\) \(0.8410758688\)
\(L(\frac12)\) \(\approx\) \(0.8410758688\)
\(L(3)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
7 \( 1 \)
good3$C_2^2$ \( 1 + 4 p T + 43 p T^{2} + 4 p^{5} T^{3} + p^{8} T^{4} \)
5$C_2^2$ \( 1 - 36 T + 1057 T^{2} - 36 p^{4} T^{3} + p^{8} T^{4} \)
11$C_2^2$ \( 1 + 18 T - 14317 T^{2} + 18 p^{4} T^{3} + p^{8} T^{4} \)
13$C_2^2$ \( 1 - 39794 T^{2} + p^{8} T^{4} \)
17$C_2^2$ \( 1 - 720 T + 256321 T^{2} - 720 p^{4} T^{3} + p^{8} T^{4} \)
19$C_2^2$ \( 1 - 156 T + 138433 T^{2} - 156 p^{4} T^{3} + p^{8} T^{4} \)
23$C_2^2$ \( 1 + 738 T + 264803 T^{2} + 738 p^{4} T^{3} + p^{8} T^{4} \)
29$C_2$ \( ( 1 + 846 T + p^{4} T^{2} )^{2} \)
31$C_2^2$ \( 1 + 2016 T + 2278273 T^{2} + 2016 p^{4} T^{3} + p^{8} T^{4} \)
37$C_2^2$ \( 1 + 2386 T + 3818835 T^{2} + 2386 p^{4} T^{3} + p^{8} T^{4} \)
41$C_2^2$ \( 1 - 1634 p^{2} T^{2} + p^{8} T^{4} \)
43$C_2$ \( ( 1 + 2510 T + p^{4} T^{2} )^{2} \)
47$C_2^2$ \( 1 + 5904 T + 16498753 T^{2} + 5904 p^{4} T^{3} + p^{8} T^{4} \)
53$C_2^2$ \( 1 - 270 T - 7817581 T^{2} - 270 p^{4} T^{3} + p^{8} T^{4} \)
59$C_2^2$ \( 1 - 5436 T + 21967393 T^{2} - 5436 p^{4} T^{3} + p^{8} T^{4} \)
61$C_2^2$ \( 1 - 11244 T + 55988353 T^{2} - 11244 p^{4} T^{3} + p^{8} T^{4} \)
67$C_2^2$ \( 1 + 2450 T - 14148621 T^{2} + 2450 p^{4} T^{3} + p^{8} T^{4} \)
71$C_2$ \( ( 1 + 3150 T + p^{4} T^{2} )^{2} \)
73$C_2^2$ \( 1 + 408 T + 28453729 T^{2} + 408 p^{4} T^{3} + p^{8} T^{4} \)
79$C_2^2$ \( 1 - 3982 T - 23093757 T^{2} - 3982 p^{4} T^{3} + p^{8} T^{4} \)
83$C_2^2$ \( 1 - 69825650 T^{2} + p^{8} T^{4} \)
89$C_2^2$ \( 1 + 13176 T + 120611233 T^{2} + 13176 p^{4} T^{3} + p^{8} T^{4} \)
97$C_2^2$ \( 1 - 18761474 T^{2} + p^{8} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.88366263547065968016933145115, −11.49568098572837921004098862982, −11.37216684385328872316458219242, −10.42684142448880565150605161849, −10.13795634156768687575203763349, −9.679126069723734556737984052571, −9.520671917401818397499633103544, −8.375238864942480962976237920729, −8.200433030295041251025511424002, −7.17088915339566772087372053512, −6.96001115844032002459025216658, −5.86757947647738760262608666939, −5.78675766438376534405104777774, −5.40612305329253897162086842127, −5.04435393657638649830475050314, −3.58811204779247745131890719939, −3.39512219007401818476142185935, −1.77577272859877898899702164867, −1.77358126583850566450466793460, −0.34515227332931472146103882234, 0.34515227332931472146103882234, 1.77358126583850566450466793460, 1.77577272859877898899702164867, 3.39512219007401818476142185935, 3.58811204779247745131890719939, 5.04435393657638649830475050314, 5.40612305329253897162086842127, 5.78675766438376534405104777774, 5.86757947647738760262608666939, 6.96001115844032002459025216658, 7.17088915339566772087372053512, 8.200433030295041251025511424002, 8.375238864942480962976237920729, 9.520671917401818397499633103544, 9.679126069723734556737984052571, 10.13795634156768687575203763349, 10.42684142448880565150605161849, 11.37216684385328872316458219242, 11.49568098572837921004098862982, 11.88366263547065968016933145115

Graph of the $Z$-function along the critical line