Properties

Label 4-14e4-1.1-c3e2-0-5
Degree $4$
Conductor $38416$
Sign $1$
Analytic cond. $133.734$
Root an. cond. $3.40064$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 14·5-s − 17·9-s + 32·11-s + 28·13-s + 154·17-s + 224·19-s + 68·23-s + 45·25-s − 236·29-s + 196·31-s + 346·37-s + 420·41-s − 344·43-s − 238·45-s − 84·47-s − 438·53-s + 448·55-s + 56·59-s − 98·61-s + 392·65-s + 336·67-s + 896·71-s − 966·73-s − 52·79-s − 440·81-s − 392·83-s + 2.15e3·85-s + ⋯
L(s)  = 1  + 1.25·5-s − 0.629·9-s + 0.877·11-s + 0.597·13-s + 2.19·17-s + 2.70·19-s + 0.616·23-s + 9/25·25-s − 1.51·29-s + 1.13·31-s + 1.53·37-s + 1.59·41-s − 1.21·43-s − 0.788·45-s − 0.260·47-s − 1.13·53-s + 1.09·55-s + 0.123·59-s − 0.205·61-s + 0.748·65-s + 0.612·67-s + 1.49·71-s − 1.54·73-s − 0.0740·79-s − 0.603·81-s − 0.518·83-s + 2.75·85-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 38416 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 38416 ^{s/2} \, \Gamma_{\C}(s+3/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(38416\)    =    \(2^{4} \cdot 7^{4}\)
Sign: $1$
Analytic conductor: \(133.734\)
Root analytic conductor: \(3.40064\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 38416,\ (\ :3/2, 3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(4.031318495\)
\(L(\frac12)\) \(\approx\) \(4.031318495\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
7 \( 1 \)
good3$C_2^2$ \( 1 + 17 T^{2} + p^{6} T^{4} \)
5$D_{4}$ \( 1 - 14 T + 151 T^{2} - 14 p^{3} T^{3} + p^{6} T^{4} \)
11$D_{4}$ \( 1 - 32 T + 1105 T^{2} - 32 p^{3} T^{3} + p^{6} T^{4} \)
13$D_{4}$ \( 1 - 28 T + 3998 T^{2} - 28 p^{3} T^{3} + p^{6} T^{4} \)
17$D_{4}$ \( 1 - 154 T + 15163 T^{2} - 154 p^{3} T^{3} + p^{6} T^{4} \)
19$D_{4}$ \( 1 - 224 T + 25929 T^{2} - 224 p^{3} T^{3} + p^{6} T^{4} \)
23$D_{4}$ \( 1 - 68 T + 23677 T^{2} - 68 p^{3} T^{3} + p^{6} T^{4} \)
29$D_{4}$ \( 1 + 236 T + 33694 T^{2} + 236 p^{3} T^{3} + p^{6} T^{4} \)
31$D_{4}$ \( 1 - 196 T + 67373 T^{2} - 196 p^{3} T^{3} + p^{6} T^{4} \)
37$D_{4}$ \( 1 - 346 T + 65967 T^{2} - 346 p^{3} T^{3} + p^{6} T^{4} \)
41$D_{4}$ \( 1 - 420 T + 176614 T^{2} - 420 p^{3} T^{3} + p^{6} T^{4} \)
43$C_2$ \( ( 1 + 4 p T + p^{3} T^{2} )^{2} \)
47$D_{4}$ \( 1 + 84 T + 201085 T^{2} + 84 p^{3} T^{3} + p^{6} T^{4} \)
53$D_{4}$ \( 1 + 438 T + 280447 T^{2} + 438 p^{3} T^{3} + p^{6} T^{4} \)
59$D_{4}$ \( 1 - 56 T + 360889 T^{2} - 56 p^{3} T^{3} + p^{6} T^{4} \)
61$D_{4}$ \( 1 + 98 T + 253751 T^{2} + 98 p^{3} T^{3} + p^{6} T^{4} \)
67$D_{4}$ \( 1 - 336 T + 627937 T^{2} - 336 p^{3} T^{3} + p^{6} T^{4} \)
71$D_{4}$ \( 1 - 896 T + 800494 T^{2} - 896 p^{3} T^{3} + p^{6} T^{4} \)
73$D_{4}$ \( 1 + 966 T + 187 p^{2} T^{2} + 966 p^{3} T^{3} + p^{6} T^{4} \)
79$D_{4}$ \( 1 + 52 T + 332261 T^{2} + 52 p^{3} T^{3} + p^{6} T^{4} \)
83$D_{4}$ \( 1 + 392 T + 895462 T^{2} + 392 p^{3} T^{3} + p^{6} T^{4} \)
89$D_{4}$ \( 1 + 294 T + 1298347 T^{2} + 294 p^{3} T^{3} + p^{6} T^{4} \)
97$D_{4}$ \( 1 - 420 T + 1655734 T^{2} - 420 p^{3} T^{3} + p^{6} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.05613945590060643502268671308, −11.90777149684239752256777139971, −11.29532297672240342727652536051, −10.97841572020270565337340240016, −10.06429052803319887777105325395, −9.672585717999712280132310616285, −9.504590003257297971959538773991, −9.078576199380446086013606393141, −8.066054946025792455243967397498, −7.86907994128073518564882708202, −7.17278286886916339240778986758, −6.46456560401594350202960942345, −5.75103747986384651107101865134, −5.63838515262862702990974097871, −5.05684794307818955601177512364, −3.95556910916878174396278543679, −3.22458729042098121325360950286, −2.76078108111994733835087058823, −1.39120033214515886397948951267, −1.07761830971109886104970621694, 1.07761830971109886104970621694, 1.39120033214515886397948951267, 2.76078108111994733835087058823, 3.22458729042098121325360950286, 3.95556910916878174396278543679, 5.05684794307818955601177512364, 5.63838515262862702990974097871, 5.75103747986384651107101865134, 6.46456560401594350202960942345, 7.17278286886916339240778986758, 7.86907994128073518564882708202, 8.066054946025792455243967397498, 9.078576199380446086013606393141, 9.504590003257297971959538773991, 9.672585717999712280132310616285, 10.06429052803319887777105325395, 10.97841572020270565337340240016, 11.29532297672240342727652536051, 11.90777149684239752256777139971, 12.05613945590060643502268671308

Graph of the $Z$-function along the critical line