L(s) = 1 | + (123. − 213. i)3-s + (−1.00e3 − 1.74e3i)5-s + (−2.06e4 − 3.58e4i)9-s + (2.39e4 − 4.15e4i)11-s − 1.71e5·13-s − 4.97e5·15-s + (−1.67e5 + 2.89e5i)17-s + (9.63e3 + 1.66e4i)19-s + (6.62e5 + 1.14e6i)23-s + (−1.05e6 + 1.82e6i)25-s − 5.35e6·27-s − 1.11e6·29-s + (4.65e6 − 8.05e6i)31-s + (−5.92e6 − 1.02e7i)33-s + (8.46e6 + 1.46e7i)37-s + ⋯ |
L(s) = 1 | + (0.880 − 1.52i)3-s + (−0.720 − 1.24i)5-s + (−1.05 − 1.81i)9-s + (0.494 − 0.855i)11-s − 1.66·13-s − 2.53·15-s + (−0.486 + 0.842i)17-s + (0.0169 + 0.0293i)19-s + (0.493 + 0.855i)23-s + (−0.538 + 0.931i)25-s − 1.93·27-s − 0.294·29-s + (0.904 − 1.56i)31-s + (−0.870 − 1.50i)33-s + (0.742 + 1.28i)37-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 196 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.386 - 0.922i)\, \overline{\Lambda}(10-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 196 ^{s/2} \, \Gamma_{\C}(s+9/2) \, L(s)\cr =\mathstrut & (0.386 - 0.922i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(5)\) |
\(\approx\) |
\(0.7692066193\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.7692066193\) |
\(L(\frac{11}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 7 | \( 1 \) |
good | 3 | \( 1 + (-123. + 213. i)T + (-9.84e3 - 1.70e4i)T^{2} \) |
| 5 | \( 1 + (1.00e3 + 1.74e3i)T + (-9.76e5 + 1.69e6i)T^{2} \) |
| 11 | \( 1 + (-2.39e4 + 4.15e4i)T + (-1.17e9 - 2.04e9i)T^{2} \) |
| 13 | \( 1 + 1.71e5T + 1.06e10T^{2} \) |
| 17 | \( 1 + (1.67e5 - 2.89e5i)T + (-5.92e10 - 1.02e11i)T^{2} \) |
| 19 | \( 1 + (-9.63e3 - 1.66e4i)T + (-1.61e11 + 2.79e11i)T^{2} \) |
| 23 | \( 1 + (-6.62e5 - 1.14e6i)T + (-9.00e11 + 1.55e12i)T^{2} \) |
| 29 | \( 1 + 1.11e6T + 1.45e13T^{2} \) |
| 31 | \( 1 + (-4.65e6 + 8.05e6i)T + (-1.32e13 - 2.28e13i)T^{2} \) |
| 37 | \( 1 + (-8.46e6 - 1.46e7i)T + (-6.49e13 + 1.12e14i)T^{2} \) |
| 41 | \( 1 + 9.85e5T + 3.27e14T^{2} \) |
| 43 | \( 1 + 1.62e7T + 5.02e14T^{2} \) |
| 47 | \( 1 + (1.34e7 + 2.33e7i)T + (-5.59e14 + 9.69e14i)T^{2} \) |
| 53 | \( 1 + (-4.12e7 + 7.13e7i)T + (-1.64e15 - 2.85e15i)T^{2} \) |
| 59 | \( 1 + (6.53e7 - 1.13e8i)T + (-4.33e15 - 7.50e15i)T^{2} \) |
| 61 | \( 1 + (4.79e7 + 8.30e7i)T + (-5.84e15 + 1.01e16i)T^{2} \) |
| 67 | \( 1 + (-5.51e6 + 9.54e6i)T + (-1.36e16 - 2.35e16i)T^{2} \) |
| 71 | \( 1 + 2.35e8T + 4.58e16T^{2} \) |
| 73 | \( 1 + (-1.60e8 + 2.77e8i)T + (-2.94e16 - 5.09e16i)T^{2} \) |
| 79 | \( 1 + (1.94e7 + 3.36e7i)T + (-5.99e16 + 1.03e17i)T^{2} \) |
| 83 | \( 1 + 2.33e8T + 1.86e17T^{2} \) |
| 89 | \( 1 + (2.66e8 + 4.60e8i)T + (-1.75e17 + 3.03e17i)T^{2} \) |
| 97 | \( 1 - 1.18e9T + 7.60e17T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.636368210379695784061456709852, −8.671606128676876500306247933658, −8.068248721355605772075326206861, −7.26931681675429000916463965281, −6.10144427174257368428676648423, −4.64437738079030316570690161531, −3.32720881848959026979778683106, −2.06231452645792670577794747563, −1.01836165074499454080283425226, −0.15773332746876120825701767414,
2.46103776749086130816659332607, 3.04363284729667091802009263212, 4.25180138341585079215582163097, 4.89914050243753945084506928969, 6.86957999845476209064831629090, 7.61687092753286224208126126412, 8.916602292465437199891936658417, 9.764031270602597633837957832520, 10.45288333785801894465358695085, 11.33013187351383993166743538934