Properties

Label 2-14e2-1.1-c9-0-11
Degree $2$
Conductor $196$
Sign $1$
Analytic cond. $100.947$
Root an. cond. $10.0472$
Motivic weight $9$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 70.3·3-s − 162.·5-s − 1.47e4·9-s + 9.08e4·11-s + 1.67e5·13-s − 1.14e4·15-s − 9.82e3·17-s − 4.75e5·19-s − 2.21e5·23-s − 1.92e6·25-s − 2.42e6·27-s + 8.20e5·29-s + 2.83e6·31-s + 6.39e6·33-s − 2.71e6·37-s + 1.18e7·39-s + 1.90e7·41-s + 2.58e7·43-s + 2.39e6·45-s − 3.51e7·47-s − 6.91e5·51-s − 8.20e7·53-s − 1.47e7·55-s − 3.34e7·57-s + 1.33e8·59-s + 1.01e8·61-s − 2.73e7·65-s + ⋯
L(s)  = 1  + 0.501·3-s − 0.116·5-s − 0.748·9-s + 1.87·11-s + 1.63·13-s − 0.0584·15-s − 0.0285·17-s − 0.837·19-s − 0.164·23-s − 0.986·25-s − 0.877·27-s + 0.215·29-s + 0.550·31-s + 0.938·33-s − 0.237·37-s + 0.817·39-s + 1.05·41-s + 1.15·43-s + 0.0871·45-s − 1.04·47-s − 0.0143·51-s − 1.42·53-s − 0.217·55-s − 0.419·57-s + 1.43·59-s + 0.940·61-s − 0.189·65-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 196 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(10-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 196 ^{s/2} \, \Gamma_{\C}(s+9/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(196\)    =    \(2^{2} \cdot 7^{2}\)
Sign: $1$
Analytic conductor: \(100.947\)
Root analytic conductor: \(10.0472\)
Motivic weight: \(9\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 196,\ (\ :9/2),\ 1)\)

Particular Values

\(L(5)\) \(\approx\) \(2.910093451\)
\(L(\frac12)\) \(\approx\) \(2.910093451\)
\(L(\frac{11}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
7 \( 1 \)
good3 \( 1 - 70.3T + 1.96e4T^{2} \)
5 \( 1 + 162.T + 1.95e6T^{2} \)
11 \( 1 - 9.08e4T + 2.35e9T^{2} \)
13 \( 1 - 1.67e5T + 1.06e10T^{2} \)
17 \( 1 + 9.82e3T + 1.18e11T^{2} \)
19 \( 1 + 4.75e5T + 3.22e11T^{2} \)
23 \( 1 + 2.21e5T + 1.80e12T^{2} \)
29 \( 1 - 8.20e5T + 1.45e13T^{2} \)
31 \( 1 - 2.83e6T + 2.64e13T^{2} \)
37 \( 1 + 2.71e6T + 1.29e14T^{2} \)
41 \( 1 - 1.90e7T + 3.27e14T^{2} \)
43 \( 1 - 2.58e7T + 5.02e14T^{2} \)
47 \( 1 + 3.51e7T + 1.11e15T^{2} \)
53 \( 1 + 8.20e7T + 3.29e15T^{2} \)
59 \( 1 - 1.33e8T + 8.66e15T^{2} \)
61 \( 1 - 1.01e8T + 1.16e16T^{2} \)
67 \( 1 - 1.48e8T + 2.72e16T^{2} \)
71 \( 1 - 1.94e8T + 4.58e16T^{2} \)
73 \( 1 + 6.20e7T + 5.88e16T^{2} \)
79 \( 1 - 4.01e8T + 1.19e17T^{2} \)
83 \( 1 - 1.49e8T + 1.86e17T^{2} \)
89 \( 1 + 6.54e8T + 3.50e17T^{2} \)
97 \( 1 + 1.51e9T + 7.60e17T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.08219123226741039877227976646, −9.618010462741817334650560332794, −8.779235917420769330779376692119, −8.120060841387394623829471137717, −6.59339464797209476455859014839, −5.91668503861838351132163422064, −4.15501753610292549313406340126, −3.46687428748430495546454873271, −1.99280471055444261368370554944, −0.829251027335053799159110502979, 0.829251027335053799159110502979, 1.99280471055444261368370554944, 3.46687428748430495546454873271, 4.15501753610292549313406340126, 5.91668503861838351132163422064, 6.59339464797209476455859014839, 8.120060841387394623829471137717, 8.779235917420769330779376692119, 9.618010462741817334650560332794, 11.08219123226741039877227976646

Graph of the $Z$-function along the critical line