Properties

Label 8-1950e4-1.1-c1e4-0-37
Degree $8$
Conductor $1.446\times 10^{13}$
Sign $1$
Analytic cond. $58782.3$
Root an. cond. $3.94598$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4-s + 9-s + 6·11-s + 6·19-s − 8·29-s + 24·31-s + 36-s + 20·41-s + 6·44-s − 5·49-s + 24·59-s + 12·61-s − 64-s + 28·71-s + 6·76-s − 24·79-s − 6·89-s + 6·99-s + 8·109-s − 8·116-s + 31·121-s + 24·124-s + 127-s + 131-s + 137-s + 139-s + 149-s + ⋯
L(s)  = 1  + 1/2·4-s + 1/3·9-s + 1.80·11-s + 1.37·19-s − 1.48·29-s + 4.31·31-s + 1/6·36-s + 3.12·41-s + 0.904·44-s − 5/7·49-s + 3.12·59-s + 1.53·61-s − 1/8·64-s + 3.32·71-s + 0.688·76-s − 2.70·79-s − 0.635·89-s + 0.603·99-s + 0.766·109-s − 0.742·116-s + 2.81·121-s + 2.15·124-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{4} \cdot 3^{4} \cdot 5^{8} \cdot 13^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{4} \cdot 3^{4} \cdot 5^{8} \cdot 13^{4}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{4} \cdot 3^{4} \cdot 5^{8} \cdot 13^{4}\)
Sign: $1$
Analytic conductor: \(58782.3\)
Root analytic conductor: \(3.94598\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{4} \cdot 3^{4} \cdot 5^{8} \cdot 13^{4} ,\ ( \ : 1/2, 1/2, 1/2, 1/2 ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(9.099768739\)
\(L(\frac12)\) \(\approx\) \(9.099768739\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_2^2$ \( 1 - T^{2} + T^{4} \)
3$C_2^2$ \( 1 - T^{2} + T^{4} \)
5 \( 1 \)
13$C_2^2$ \( 1 - T^{2} + p^{2} T^{4} \)
good7$C_2^3$ \( 1 + 5 T^{2} - 24 T^{4} + 5 p^{2} T^{6} + p^{4} T^{8} \)
11$C_2^2$ \( ( 1 - 3 T - 2 T^{2} - 3 p T^{3} + p^{2} T^{4} )^{2} \)
17$C_2^2$ \( ( 1 + p T^{2} + p^{2} T^{4} )^{2} \)
19$C_2^2$ \( ( 1 - 3 T - 10 T^{2} - 3 p T^{3} + p^{2} T^{4} )^{2} \)
23$C_2^3$ \( 1 + 30 T^{2} + 371 T^{4} + 30 p^{2} T^{6} + p^{4} T^{8} \)
29$C_2^2$ \( ( 1 + 4 T - 13 T^{2} + 4 p T^{3} + p^{2} T^{4} )^{2} \)
31$C_2$ \( ( 1 - 6 T + p T^{2} )^{4} \)
37$C_2^3$ \( 1 - 7 T^{2} - 1320 T^{4} - 7 p^{2} T^{6} + p^{4} T^{8} \)
41$C_2^2$ \( ( 1 - 10 T + 59 T^{2} - 10 p T^{3} + p^{2} T^{4} )^{2} \)
43$C_2^3$ \( 1 - 14 T^{2} - 1653 T^{4} - 14 p^{2} T^{6} + p^{4} T^{8} \)
47$C_2^2$ \( ( 1 - 85 T^{2} + p^{2} T^{4} )^{2} \)
53$C_2^2$ \( ( 1 - 25 T^{2} + p^{2} T^{4} )^{2} \)
59$C_2^2$ \( ( 1 - 12 T + 85 T^{2} - 12 p T^{3} + p^{2} T^{4} )^{2} \)
61$C_2^2$ \( ( 1 - 6 T - 25 T^{2} - 6 p T^{3} + p^{2} T^{4} )^{2} \)
67$C_2^3$ \( 1 + 70 T^{2} + 411 T^{4} + 70 p^{2} T^{6} + p^{4} T^{8} \)
71$C_2^2$ \( ( 1 - 14 T + 125 T^{2} - 14 p T^{3} + p^{2} T^{4} )^{2} \)
73$C_2^2$ \( ( 1 - 82 T^{2} + p^{2} T^{4} )^{2} \)
79$C_2$ \( ( 1 + 6 T + p T^{2} )^{4} \)
83$C_2^2$ \( ( 1 + 90 T^{2} + p^{2} T^{4} )^{2} \)
89$C_2^2$ \( ( 1 + 3 T - 80 T^{2} + 3 p T^{3} + p^{2} T^{4} )^{2} \)
97$C_2^2$$\times$$C_2^2$ \( ( 1 - 18 T + 227 T^{2} - 18 p T^{3} + p^{2} T^{4} )( 1 + 18 T + 227 T^{2} + 18 p T^{3} + p^{2} T^{4} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−6.50943319296445068824000774411, −6.37354979959338109529044408027, −6.18679108966218586982818373665, −5.88437395004399370117789646976, −5.85682505723647383284034950128, −5.38329020172664856944877444374, −5.34592377491477852497487231260, −4.98352042801613135760394062937, −4.98035416216226540670055383715, −4.44452541334452489315673520043, −4.19701420223719431316304038794, −4.11337037668395497279424018670, −4.10946390152544475302969258807, −3.74304729156811646979673216569, −3.40647762323494148338509745284, −3.09316995765034674553291413068, −2.96349272069845497424002406116, −2.69672493484642326872891024736, −2.23430719775438519632846681694, −2.16242332507955216747242675668, −1.97409780003684324087906512234, −1.14491768686840109145607060515, −1.10957083852826064292826851050, −1.03623062754124285046938772371, −0.56145356035458715993867243585, 0.56145356035458715993867243585, 1.03623062754124285046938772371, 1.10957083852826064292826851050, 1.14491768686840109145607060515, 1.97409780003684324087906512234, 2.16242332507955216747242675668, 2.23430719775438519632846681694, 2.69672493484642326872891024736, 2.96349272069845497424002406116, 3.09316995765034674553291413068, 3.40647762323494148338509745284, 3.74304729156811646979673216569, 4.10946390152544475302969258807, 4.11337037668395497279424018670, 4.19701420223719431316304038794, 4.44452541334452489315673520043, 4.98035416216226540670055383715, 4.98352042801613135760394062937, 5.34592377491477852497487231260, 5.38329020172664856944877444374, 5.85682505723647383284034950128, 5.88437395004399370117789646976, 6.18679108966218586982818373665, 6.37354979959338109529044408027, 6.50943319296445068824000774411

Graph of the $Z$-function along the critical line