L(s) = 1 | + (0.5 + 0.866i)2-s + (0.866 − 0.5i)3-s + (−0.499 + 0.866i)4-s + (0.866 + 0.499i)6-s + (2.36 − 4.09i)7-s − 0.999·8-s + (0.499 − 0.866i)9-s + (4.09 − 2.36i)11-s + 0.999i·12-s + (−0.232 + 3.59i)13-s + 4.73·14-s + (−0.5 − 0.866i)16-s + (−4.5 − 2.59i)17-s + 0.999·18-s + (−1.09 − 0.633i)19-s + ⋯ |
L(s) = 1 | + (0.353 + 0.612i)2-s + (0.499 − 0.288i)3-s + (−0.249 + 0.433i)4-s + (0.353 + 0.204i)6-s + (0.894 − 1.54i)7-s − 0.353·8-s + (0.166 − 0.288i)9-s + (1.23 − 0.713i)11-s + 0.288i·12-s + (−0.0643 + 0.997i)13-s + 1.26·14-s + (−0.125 − 0.216i)16-s + (−1.09 − 0.630i)17-s + 0.235·18-s + (−0.251 − 0.145i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1950 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.857 + 0.514i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1950 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.857 + 0.514i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.710853510\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.710853510\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.5 - 0.866i)T \) |
| 3 | \( 1 + (-0.866 + 0.5i)T \) |
| 5 | \( 1 \) |
| 13 | \( 1 + (0.232 - 3.59i)T \) |
good | 7 | \( 1 + (-2.36 + 4.09i)T + (-3.5 - 6.06i)T^{2} \) |
| 11 | \( 1 + (-4.09 + 2.36i)T + (5.5 - 9.52i)T^{2} \) |
| 17 | \( 1 + (4.5 + 2.59i)T + (8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (1.09 + 0.633i)T + (9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (-1.90 + 1.09i)T + (11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (1.5 + 2.59i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + 2.53iT - 31T^{2} \) |
| 37 | \( 1 + (-1.5 - 2.59i)T + (-18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + (-0.401 + 0.232i)T + (20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (5.36 + 3.09i)T + (21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 - 1.26T + 47T^{2} \) |
| 53 | \( 1 + 3iT - 53T^{2} \) |
| 59 | \( 1 + (-12 - 6.92i)T + (29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (2.40 - 4.16i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (5.36 + 9.29i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + (-7.09 - 4.09i)T + (35.5 + 61.4i)T^{2} \) |
| 73 | \( 1 + 12.1T + 73T^{2} \) |
| 79 | \( 1 - 12.3T + 79T^{2} \) |
| 83 | \( 1 - 11.6T + 83T^{2} \) |
| 89 | \( 1 + (2.19 - 1.26i)T + (44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + (3 - 5.19i)T + (-48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.889223358292863701433306316237, −8.300248810143477997655133755913, −7.34447976168087620202038420773, −6.88810857115686142912643243470, −6.23378333044253775301368459393, −4.82196332536661924391250149447, −4.22372259785258019157549157549, −3.57795622736143595411142319256, −2.09123444306644730952363591276, −0.858711655237212459706073599104,
1.59886395187927515856132841985, 2.28823871036227476979611180151, 3.31109420990351141597572243431, 4.32502989527211776376102111295, 5.04419335629583856101811601557, 5.84618641188474730573467436870, 6.79293017691419969400257840782, 7.984721975031732710955075300379, 8.720117556730655748129813992262, 9.143614165922997894859984561040