Properties

Label 2-195-195.194-c2-0-20
Degree $2$
Conductor $195$
Sign $1$
Analytic cond. $5.31336$
Root an. cond. $2.30507$
Motivic weight $2$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3·3-s + 4·4-s + 5·5-s − 7-s + 9·9-s − 17·11-s − 12·12-s + 13·13-s − 15·15-s + 16·16-s + 31·17-s + 20·20-s + 3·21-s + 19·23-s + 25·25-s − 27·27-s − 4·28-s + 51·33-s − 5·35-s + 36·36-s − 61·37-s − 39·39-s + 43·41-s − 68·44-s + 45·45-s − 48·48-s − 48·49-s + ⋯
L(s)  = 1  − 3-s + 4-s + 5-s − 1/7·7-s + 9-s − 1.54·11-s − 12-s + 13-s − 15-s + 16-s + 1.82·17-s + 20-s + 1/7·21-s + 0.826·23-s + 25-s − 27-s − 1/7·28-s + 1.54·33-s − 1/7·35-s + 36-s − 1.64·37-s − 39-s + 1.04·41-s − 1.54·44-s + 45-s − 48-s − 0.979·49-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 195 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 195 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(195\)    =    \(3 \cdot 5 \cdot 13\)
Sign: $1$
Analytic conductor: \(5.31336\)
Root analytic conductor: \(2.30507\)
Motivic weight: \(2\)
Rational: yes
Arithmetic: yes
Character: $\chi_{195} (194, \cdot )$
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 195,\ (\ :1),\ 1)\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(1.639404000\)
\(L(\frac12)\) \(\approx\) \(1.639404000\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + p T \)
5 \( 1 - p T \)
13 \( 1 - p T \)
good2 \( ( 1 - p T )( 1 + p T ) \)
7 \( 1 + T + p^{2} T^{2} \)
11 \( 1 + 17 T + p^{2} T^{2} \)
17 \( 1 - 31 T + p^{2} T^{2} \)
19 \( ( 1 - p T )( 1 + p T ) \)
23 \( 1 - 19 T + p^{2} T^{2} \)
29 \( ( 1 - p T )( 1 + p T ) \)
31 \( ( 1 - p T )( 1 + p T ) \)
37 \( 1 + 61 T + p^{2} T^{2} \)
41 \( 1 - 43 T + p^{2} T^{2} \)
43 \( ( 1 - p T )( 1 + p T ) \)
47 \( ( 1 - p T )( 1 + p T ) \)
53 \( 1 + 41 T + p^{2} T^{2} \)
59 \( 1 + 38 T + p^{2} T^{2} \)
61 \( 1 + 73 T + p^{2} T^{2} \)
67 \( 1 - 74 T + p^{2} T^{2} \)
71 \( 1 - 103 T + p^{2} T^{2} \)
73 \( 1 + 94 T + p^{2} T^{2} \)
79 \( 1 + 37 T + p^{2} T^{2} \)
83 \( ( 1 - p T )( 1 + p T ) \)
89 \( 1 + 173 T + p^{2} T^{2} \)
97 \( 1 + 181 T + p^{2} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.35650383321124473066500937930, −11.05414053390681389658879212792, −10.54074523906747723011572871732, −9.723815026965915891908854471809, −7.986562466275709437536075566327, −6.90572285915530245537702148843, −5.84822849403067246071761479192, −5.27727475927254964577085556976, −3.06763453592803290747245242836, −1.41025022659525055073707903900, 1.41025022659525055073707903900, 3.06763453592803290747245242836, 5.27727475927254964577085556976, 5.84822849403067246071761479192, 6.90572285915530245537702148843, 7.986562466275709437536075566327, 9.723815026965915891908854471809, 10.54074523906747723011572871732, 11.05414053390681389658879212792, 12.35650383321124473066500937930

Graph of the $Z$-function along the critical line