Properties

Label 2-195-3.2-c2-0-30
Degree $2$
Conductor $195$
Sign $0.354 - 0.935i$
Analytic cond. $5.31336$
Root an. cond. $2.30507$
Motivic weight $2$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2.89i·2-s + (−2.80 − 1.06i)3-s − 4.36·4-s − 2.23i·5-s + (−3.07 + 8.11i)6-s − 8.81·7-s + 1.04i·8-s + (6.73 + 5.96i)9-s − 6.46·10-s + 3.82i·11-s + (12.2 + 4.63i)12-s − 3.60·13-s + 25.4i·14-s + (−2.37 + 6.27i)15-s − 14.4·16-s + 20.5i·17-s + ⋯
L(s)  = 1  − 1.44i·2-s + (−0.935 − 0.354i)3-s − 1.09·4-s − 0.447i·5-s + (−0.512 + 1.35i)6-s − 1.25·7-s + 0.130i·8-s + (0.748 + 0.663i)9-s − 0.646·10-s + 0.348i·11-s + (1.01 + 0.386i)12-s − 0.277·13-s + 1.81i·14-s + (−0.158 + 0.418i)15-s − 0.901·16-s + 1.20i·17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 195 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.354 - 0.935i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 195 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.354 - 0.935i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(195\)    =    \(3 \cdot 5 \cdot 13\)
Sign: $0.354 - 0.935i$
Analytic conductor: \(5.31336\)
Root analytic conductor: \(2.30507\)
Motivic weight: \(2\)
Rational: no
Arithmetic: yes
Character: $\chi_{195} (131, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 195,\ (\ :1),\ 0.354 - 0.935i)\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(0.143512 + 0.0990609i\)
\(L(\frac12)\) \(\approx\) \(0.143512 + 0.0990609i\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + (2.80 + 1.06i)T \)
5 \( 1 + 2.23iT \)
13 \( 1 + 3.60T \)
good2 \( 1 + 2.89iT - 4T^{2} \)
7 \( 1 + 8.81T + 49T^{2} \)
11 \( 1 - 3.82iT - 121T^{2} \)
17 \( 1 - 20.5iT - 289T^{2} \)
19 \( 1 - 16.5T + 361T^{2} \)
23 \( 1 + 26.1iT - 529T^{2} \)
29 \( 1 - 9.49iT - 841T^{2} \)
31 \( 1 + 28.5T + 961T^{2} \)
37 \( 1 + 48.5T + 1.36e3T^{2} \)
41 \( 1 - 24.6iT - 1.68e3T^{2} \)
43 \( 1 + 46.2T + 1.84e3T^{2} \)
47 \( 1 + 65.7iT - 2.20e3T^{2} \)
53 \( 1 - 57.4iT - 2.80e3T^{2} \)
59 \( 1 + 2.70iT - 3.48e3T^{2} \)
61 \( 1 + 115.T + 3.72e3T^{2} \)
67 \( 1 + 47.5T + 4.48e3T^{2} \)
71 \( 1 + 54.2iT - 5.04e3T^{2} \)
73 \( 1 - 76.4T + 5.32e3T^{2} \)
79 \( 1 + 110.T + 6.24e3T^{2} \)
83 \( 1 + 44.0iT - 6.88e3T^{2} \)
89 \( 1 + 150. iT - 7.92e3T^{2} \)
97 \( 1 - 76.4T + 9.40e3T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.64737701105812779304481844402, −10.48399029997229221924319095810, −10.01875504314063119124273330615, −8.885429262186022797614167114630, −7.17958393929586538001085043388, −6.11848736237665223282282162919, −4.70558387983054828097491090895, −3.38302099435391633111348591956, −1.71500512935186719959488173513, −0.11041884757093185078462350398, 3.39262698537200641263854673801, 5.07148468548940209484671325599, 5.90095889498200701275178954633, 6.83907486946412794244983315709, 7.47058457657479520934206136293, 9.183696953945582534436464507060, 9.847771783278606348177620747864, 11.13725716986344971116624413538, 12.04595558141130206046870157639, 13.31212005486939940982079426632

Graph of the $Z$-function along the critical line