L(s) = 1 | + 3.53i·2-s + (−1.92 + 2.29i)3-s − 8.47·4-s − 2.23i·5-s + (−8.11 − 6.81i)6-s − 3.35·7-s − 15.7i·8-s + (−1.56 − 8.86i)9-s + 7.89·10-s − 0.969i·11-s + (16.3 − 19.4i)12-s + 3.60·13-s − 11.8i·14-s + (5.13 + 4.31i)15-s + 21.8·16-s + 16.8i·17-s + ⋯ |
L(s) = 1 | + 1.76i·2-s + (−0.642 + 0.766i)3-s − 2.11·4-s − 0.447i·5-s + (−1.35 − 1.13i)6-s − 0.478·7-s − 1.97i·8-s + (−0.173 − 0.984i)9-s + 0.789·10-s − 0.0881i·11-s + (1.36 − 1.62i)12-s + 0.277·13-s − 0.845i·14-s + (0.342 + 0.287i)15-s + 1.36·16-s + 0.993i·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 195 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.766 + 0.642i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 195 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.766 + 0.642i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(0.0635971 - 0.0231491i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.0635971 - 0.0231491i\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (1.92 - 2.29i)T \) |
| 5 | \( 1 + 2.23iT \) |
| 13 | \( 1 - 3.60T \) |
good | 2 | \( 1 - 3.53iT - 4T^{2} \) |
| 7 | \( 1 + 3.35T + 49T^{2} \) |
| 11 | \( 1 + 0.969iT - 121T^{2} \) |
| 17 | \( 1 - 16.8iT - 289T^{2} \) |
| 19 | \( 1 + 36.1T + 361T^{2} \) |
| 23 | \( 1 + 29.4iT - 529T^{2} \) |
| 29 | \( 1 + 0.896iT - 841T^{2} \) |
| 31 | \( 1 + 19.4T + 961T^{2} \) |
| 37 | \( 1 - 44.9T + 1.36e3T^{2} \) |
| 41 | \( 1 - 25.4iT - 1.68e3T^{2} \) |
| 43 | \( 1 + 61.9T + 1.84e3T^{2} \) |
| 47 | \( 1 + 9.61iT - 2.20e3T^{2} \) |
| 53 | \( 1 - 13.4iT - 2.80e3T^{2} \) |
| 59 | \( 1 + 113. iT - 3.48e3T^{2} \) |
| 61 | \( 1 + 32.6T + 3.72e3T^{2} \) |
| 67 | \( 1 + 102.T + 4.48e3T^{2} \) |
| 71 | \( 1 - 27.4iT - 5.04e3T^{2} \) |
| 73 | \( 1 + 31.7T + 5.32e3T^{2} \) |
| 79 | \( 1 + 51.8T + 6.24e3T^{2} \) |
| 83 | \( 1 - 130. iT - 6.88e3T^{2} \) |
| 89 | \( 1 - 93.4iT - 7.92e3T^{2} \) |
| 97 | \( 1 - 60.7T + 9.40e3T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−13.18126403344104114258153661371, −12.55736317140806604752083427029, −10.97494389171212260332187650226, −9.921648260525516247126740898074, −8.860141823841523080331897333051, −8.189094476466851706597484765284, −6.51953604741659610004215902516, −6.13935034786815387759684389520, −4.86301214144498934000842010427, −3.99633238064343085722296448116,
0.04181048395276118618830014725, 1.78009522684099417277119079881, 3.03639886418261468716774256625, 4.50128415943958269901906843689, 5.97245619711905223845809208867, 7.26263001949518927472467338988, 8.701797696897969994422571472032, 9.845497700713359508255592463442, 10.74079960673822753699688478510, 11.42962463114053479805652602283