L(s) = 1 | + 2.37i·2-s + (0.699 + 2.91i)3-s − 1.65·4-s + 2.23i·5-s + (−6.93 + 1.66i)6-s − 2.88·7-s + 5.58i·8-s + (−8.02 + 4.08i)9-s − 5.31·10-s − 11.6i·11-s + (−1.15 − 4.81i)12-s + 3.60·13-s − 6.85i·14-s + (−6.52 + 1.56i)15-s − 19.8·16-s + 33.5i·17-s + ⋯ |
L(s) = 1 | + 1.18i·2-s + (0.233 + 0.972i)3-s − 0.412·4-s + 0.447i·5-s + (−1.15 + 0.277i)6-s − 0.412·7-s + 0.697i·8-s + (−0.891 + 0.453i)9-s − 0.531·10-s − 1.06i·11-s + (−0.0962 − 0.401i)12-s + 0.277·13-s − 0.489i·14-s + (−0.434 + 0.104i)15-s − 1.24·16-s + 1.97i·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 195 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.972 + 0.233i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 195 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (-0.972 + 0.233i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(0.175607 - 1.48502i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.175607 - 1.48502i\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (-0.699 - 2.91i)T \) |
| 5 | \( 1 - 2.23iT \) |
| 13 | \( 1 - 3.60T \) |
good | 2 | \( 1 - 2.37iT - 4T^{2} \) |
| 7 | \( 1 + 2.88T + 49T^{2} \) |
| 11 | \( 1 + 11.6iT - 121T^{2} \) |
| 17 | \( 1 - 33.5iT - 289T^{2} \) |
| 19 | \( 1 - 17.9T + 361T^{2} \) |
| 23 | \( 1 + 15.3iT - 529T^{2} \) |
| 29 | \( 1 + 36.8iT - 841T^{2} \) |
| 31 | \( 1 - 20.8T + 961T^{2} \) |
| 37 | \( 1 - 12.9T + 1.36e3T^{2} \) |
| 41 | \( 1 - 68.5iT - 1.68e3T^{2} \) |
| 43 | \( 1 - 61.7T + 1.84e3T^{2} \) |
| 47 | \( 1 - 68.7iT - 2.20e3T^{2} \) |
| 53 | \( 1 + 47.7iT - 2.80e3T^{2} \) |
| 59 | \( 1 - 84.7iT - 3.48e3T^{2} \) |
| 61 | \( 1 - 22.8T + 3.72e3T^{2} \) |
| 67 | \( 1 - 29.1T + 4.48e3T^{2} \) |
| 71 | \( 1 - 99.3iT - 5.04e3T^{2} \) |
| 73 | \( 1 - 18.1T + 5.32e3T^{2} \) |
| 79 | \( 1 - 63.3T + 6.24e3T^{2} \) |
| 83 | \( 1 + 57.8iT - 6.88e3T^{2} \) |
| 89 | \( 1 + 143. iT - 7.92e3T^{2} \) |
| 97 | \( 1 - 17.3T + 9.40e3T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−13.18085905048780992810335703714, −11.51992482734201867223257274660, −10.77986334408078355773802570185, −9.726594531408676295049191038018, −8.511240562102314777375848017331, −7.905657523997336808090103529189, −6.29078789650251245807546908150, −5.81858548388043774385384654790, −4.25061180556866435486427507108, −2.90787000814013056446500129576,
0.860470702552565229226813549884, 2.26078494182832516641776875098, 3.43217973846744243819789346832, 5.14406044471798320775489395460, 6.80338504080230596124253092803, 7.52120784724544923985776191213, 9.141207527237414770356263451015, 9.678357528606339460576932139234, 11.05881344055741241629461003816, 12.03170373913822205458311563097