L(s) = 1 | + (−0.483 + 0.483i)2-s + (1.53 + 0.793i)3-s + 1.53i·4-s + (−0.707 + 0.707i)5-s + (−1.12 + 0.361i)6-s + (−1.24 + 1.24i)7-s + (−1.70 − 1.70i)8-s + (1.74 + 2.44i)9-s − 0.684i·10-s + (−0.387 − 0.387i)11-s + (−1.21 + 2.35i)12-s + (−0.874 − 3.49i)13-s − 1.20i·14-s + (−1.64 + 0.527i)15-s − 1.41·16-s + 6.75·17-s + ⋯ |
L(s) = 1 | + (−0.342 + 0.342i)2-s + (0.888 + 0.458i)3-s + 0.765i·4-s + (−0.316 + 0.316i)5-s + (−0.460 + 0.147i)6-s + (−0.470 + 0.470i)7-s + (−0.604 − 0.604i)8-s + (0.580 + 0.814i)9-s − 0.216i·10-s + (−0.116 − 0.116i)11-s + (−0.350 + 0.680i)12-s + (−0.242 − 0.970i)13-s − 0.322i·14-s + (−0.425 + 0.136i)15-s − 0.352·16-s + 1.63·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 195 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.257 - 0.966i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 195 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.257 - 0.966i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.716540 + 0.932722i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.716540 + 0.932722i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (-1.53 - 0.793i)T \) |
| 5 | \( 1 + (0.707 - 0.707i)T \) |
| 13 | \( 1 + (0.874 + 3.49i)T \) |
good | 2 | \( 1 + (0.483 - 0.483i)T - 2iT^{2} \) |
| 7 | \( 1 + (1.24 - 1.24i)T - 7iT^{2} \) |
| 11 | \( 1 + (0.387 + 0.387i)T + 11iT^{2} \) |
| 17 | \( 1 - 6.75T + 17T^{2} \) |
| 19 | \( 1 + (-1.33 - 1.33i)T + 19iT^{2} \) |
| 23 | \( 1 - 1.69T + 23T^{2} \) |
| 29 | \( 1 - 3.85iT - 29T^{2} \) |
| 31 | \( 1 + (-4.06 - 4.06i)T + 31iT^{2} \) |
| 37 | \( 1 + (2.36 - 2.36i)T - 37iT^{2} \) |
| 41 | \( 1 + (-5.72 + 5.72i)T - 41iT^{2} \) |
| 43 | \( 1 + 11.7iT - 43T^{2} \) |
| 47 | \( 1 + (5.99 + 5.99i)T + 47iT^{2} \) |
| 53 | \( 1 + 8.81iT - 53T^{2} \) |
| 59 | \( 1 + (-1.30 - 1.30i)T + 59iT^{2} \) |
| 61 | \( 1 + 1.16T + 61T^{2} \) |
| 67 | \( 1 + (4.66 + 4.66i)T + 67iT^{2} \) |
| 71 | \( 1 + (0.915 - 0.915i)T - 71iT^{2} \) |
| 73 | \( 1 + (-8.11 + 8.11i)T - 73iT^{2} \) |
| 79 | \( 1 + 3.85T + 79T^{2} \) |
| 83 | \( 1 + (11.9 - 11.9i)T - 83iT^{2} \) |
| 89 | \( 1 + (5.99 + 5.99i)T + 89iT^{2} \) |
| 97 | \( 1 + (-1.03 - 1.03i)T + 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.69216923235617075779543479095, −12.07807568841762006290726331226, −10.52196179332344959926304060862, −9.686425776201231135079400914527, −8.624522182349805859607493899991, −7.897847697443707537959839800611, −7.02316579913559225659125125495, −5.36459784627204778235828193150, −3.58684615616083735209357730504, −2.93173134109613956256283898257,
1.20699527248659873648639631836, 2.87827021562097586385605030784, 4.42780710950055045689514500367, 6.06661036589002406558692280112, 7.26137293488391809733132272195, 8.267045723975812762624166958130, 9.554280759466047712987649444909, 9.800779836157208155814898064644, 11.27771486886607922921447542032, 12.20603285920522292361870801620