L(s) = 1 | + (−1.57 + 1.57i)2-s + (1.73 + 0.0822i)3-s − 2.98i·4-s + (0.707 − 0.707i)5-s + (−2.86 + 2.60i)6-s + (−2.29 + 2.29i)7-s + (1.56 + 1.56i)8-s + (2.98 + 0.284i)9-s + 2.23i·10-s + (3.85 + 3.85i)11-s + (0.245 − 5.16i)12-s + (−0.766 + 3.52i)13-s − 7.24i·14-s + (1.28 − 1.16i)15-s + 1.04·16-s + 3.78·17-s + ⋯ |
L(s) = 1 | + (−1.11 + 1.11i)2-s + (0.998 + 0.0474i)3-s − 1.49i·4-s + (0.316 − 0.316i)5-s + (−1.16 + 1.06i)6-s + (−0.866 + 0.866i)7-s + (0.551 + 0.551i)8-s + (0.995 + 0.0948i)9-s + 0.706i·10-s + (1.16 + 1.16i)11-s + (0.0709 − 1.49i)12-s + (−0.212 + 0.977i)13-s − 1.93i·14-s + (0.330 − 0.300i)15-s + 0.261·16-s + 0.917·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 195 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.227 - 0.973i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 195 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.227 - 0.973i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.581693 + 0.733437i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.581693 + 0.733437i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (-1.73 - 0.0822i)T \) |
| 5 | \( 1 + (-0.707 + 0.707i)T \) |
| 13 | \( 1 + (0.766 - 3.52i)T \) |
good | 2 | \( 1 + (1.57 - 1.57i)T - 2iT^{2} \) |
| 7 | \( 1 + (2.29 - 2.29i)T - 7iT^{2} \) |
| 11 | \( 1 + (-3.85 - 3.85i)T + 11iT^{2} \) |
| 17 | \( 1 - 3.78T + 17T^{2} \) |
| 19 | \( 1 + (1.28 + 1.28i)T + 19iT^{2} \) |
| 23 | \( 1 + 5.74T + 23T^{2} \) |
| 29 | \( 1 + 5.42iT - 29T^{2} \) |
| 31 | \( 1 + (3.95 + 3.95i)T + 31iT^{2} \) |
| 37 | \( 1 + (-6.99 + 6.99i)T - 37iT^{2} \) |
| 41 | \( 1 + (-0.872 + 0.872i)T - 41iT^{2} \) |
| 43 | \( 1 + 4.18iT - 43T^{2} \) |
| 47 | \( 1 + (1.56 + 1.56i)T + 47iT^{2} \) |
| 53 | \( 1 + 1.55iT - 53T^{2} \) |
| 59 | \( 1 + (4.00 + 4.00i)T + 59iT^{2} \) |
| 61 | \( 1 + 2.47T + 61T^{2} \) |
| 67 | \( 1 + (-5.37 - 5.37i)T + 67iT^{2} \) |
| 71 | \( 1 + (-1.46 + 1.46i)T - 71iT^{2} \) |
| 73 | \( 1 + (5.34 - 5.34i)T - 73iT^{2} \) |
| 79 | \( 1 + 4.01T + 79T^{2} \) |
| 83 | \( 1 + (-3.77 + 3.77i)T - 83iT^{2} \) |
| 89 | \( 1 + (-4.28 - 4.28i)T + 89iT^{2} \) |
| 97 | \( 1 + (12.3 + 12.3i)T + 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.81290072669855047968739846207, −12.00783320224780143784056976684, −9.906698347009022918407039067813, −9.497352040243518538898362715128, −8.959898951511368606509288826503, −7.81317354026124019291765480513, −6.86097395276446538449449738987, −5.93333989556668556158697735854, −4.08026538008411639579401248833, −2.03309061156349584107022664014,
1.23337265064511051837572764352, 3.03971400258354851316574527527, 3.65275178327517605268192696085, 6.23563665753497253014355036756, 7.58991240089770603124689300344, 8.482604707184296589092273812525, 9.496887968988775630391373656721, 10.09633559023765906555649378824, 10.85279274330046868219768731325, 12.14906872069009895288577200453