L(s) = 1 | + (−0.455 − 0.455i)2-s + (−0.446 + 1.67i)3-s − 1.58i·4-s + (−0.707 − 0.707i)5-s + (0.966 − 0.559i)6-s + (−2.89 − 2.89i)7-s + (−1.63 + 1.63i)8-s + (−2.60 − 1.49i)9-s + 0.644i·10-s + (2.45 − 2.45i)11-s + (2.65 + 0.707i)12-s + (3.43 − 1.09i)13-s + 2.64i·14-s + (1.49 − 0.867i)15-s − 1.68·16-s − 6.48·17-s + ⋯ |
L(s) = 1 | + (−0.322 − 0.322i)2-s + (−0.257 + 0.966i)3-s − 0.792i·4-s + (−0.316 − 0.316i)5-s + (0.394 − 0.228i)6-s + (−1.09 − 1.09i)7-s + (−0.577 + 0.577i)8-s + (−0.867 − 0.498i)9-s + 0.203i·10-s + (0.741 − 0.741i)11-s + (0.765 + 0.204i)12-s + (0.952 − 0.304i)13-s + 0.705i·14-s + (0.387 − 0.224i)15-s − 0.420·16-s − 1.57·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 195 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.428 + 0.903i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 195 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.428 + 0.903i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.318312 - 0.503116i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.318312 - 0.503116i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (0.446 - 1.67i)T \) |
| 5 | \( 1 + (0.707 + 0.707i)T \) |
| 13 | \( 1 + (-3.43 + 1.09i)T \) |
good | 2 | \( 1 + (0.455 + 0.455i)T + 2iT^{2} \) |
| 7 | \( 1 + (2.89 + 2.89i)T + 7iT^{2} \) |
| 11 | \( 1 + (-2.45 + 2.45i)T - 11iT^{2} \) |
| 17 | \( 1 + 6.48T + 17T^{2} \) |
| 19 | \( 1 + (-3.48 + 3.48i)T - 19iT^{2} \) |
| 23 | \( 1 + 2.39T + 23T^{2} \) |
| 29 | \( 1 - 0.0728iT - 29T^{2} \) |
| 31 | \( 1 + (3.16 - 3.16i)T - 31iT^{2} \) |
| 37 | \( 1 + (-6.34 - 6.34i)T + 37iT^{2} \) |
| 41 | \( 1 + (2.12 + 2.12i)T + 41iT^{2} \) |
| 43 | \( 1 + 3.53iT - 43T^{2} \) |
| 47 | \( 1 + (-8.05 + 8.05i)T - 47iT^{2} \) |
| 53 | \( 1 - 9.32iT - 53T^{2} \) |
| 59 | \( 1 + (-3.31 + 3.31i)T - 59iT^{2} \) |
| 61 | \( 1 + 1.29T + 61T^{2} \) |
| 67 | \( 1 + (-0.922 + 0.922i)T - 67iT^{2} \) |
| 71 | \( 1 + (2.96 + 2.96i)T + 71iT^{2} \) |
| 73 | \( 1 + (5.91 + 5.91i)T + 73iT^{2} \) |
| 79 | \( 1 - 9.54T + 79T^{2} \) |
| 83 | \( 1 + (2.62 + 2.62i)T + 83iT^{2} \) |
| 89 | \( 1 + (-7.03 + 7.03i)T - 89iT^{2} \) |
| 97 | \( 1 + (-6.77 + 6.77i)T - 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.75045548898178841033441582872, −10.97698486677892819940272894868, −10.34500357513156211544435781717, −9.294782311169195148662207044934, −8.730949843915243286524031486571, −6.76256782854025604787556421992, −5.86853379004536206023222216156, −4.43033297857164547222865215476, −3.34443779740084924215355080472, −0.59215546641218459801928964821,
2.42828361024714422753983145847, 3.85597679652573631100072190809, 6.05263741192474777071687152761, 6.64453829705425384946422898835, 7.64378103159064947254890507604, 8.753236862218706794738860297785, 9.457063082899106645258822712921, 11.26668177999442739912115902934, 11.98082903800582551002211119894, 12.71681345616399609008955273913