L(s) = 1 | + (−1.43 − 1.43i)2-s + (−0.158 − 1.72i)3-s + 2.13i·4-s + (−0.707 − 0.707i)5-s + (−2.25 + 2.70i)6-s + (−1.21 − 1.21i)7-s + (0.201 − 0.201i)8-s + (−2.94 + 0.546i)9-s + 2.03i·10-s + (−0.581 + 0.581i)11-s + (3.69 − 0.339i)12-s + (1.79 − 3.12i)13-s + 3.49i·14-s + (−1.10 + 1.33i)15-s + 3.70·16-s − 2.27·17-s + ⋯ |
L(s) = 1 | + (−1.01 − 1.01i)2-s + (−0.0915 − 0.995i)3-s + 1.06i·4-s + (−0.316 − 0.316i)5-s + (−0.919 + 1.10i)6-s + (−0.458 − 0.458i)7-s + (0.0710 − 0.0710i)8-s + (−0.983 + 0.182i)9-s + 0.643i·10-s + (−0.175 + 0.175i)11-s + (1.06 − 0.0979i)12-s + (0.496 − 0.868i)13-s + 0.933i·14-s + (−0.285 + 0.343i)15-s + 0.925·16-s − 0.552·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 195 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.606 - 0.795i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 195 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.606 - 0.795i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.161805 + 0.326867i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.161805 + 0.326867i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (0.158 + 1.72i)T \) |
| 5 | \( 1 + (0.707 + 0.707i)T \) |
| 13 | \( 1 + (-1.79 + 3.12i)T \) |
good | 2 | \( 1 + (1.43 + 1.43i)T + 2iT^{2} \) |
| 7 | \( 1 + (1.21 + 1.21i)T + 7iT^{2} \) |
| 11 | \( 1 + (0.581 - 0.581i)T - 11iT^{2} \) |
| 17 | \( 1 + 2.27T + 17T^{2} \) |
| 19 | \( 1 + (4.21 - 4.21i)T - 19iT^{2} \) |
| 23 | \( 1 - 3.13T + 23T^{2} \) |
| 29 | \( 1 + 3.12iT - 29T^{2} \) |
| 31 | \( 1 + (-2.36 + 2.36i)T - 31iT^{2} \) |
| 37 | \( 1 + (7.73 + 7.73i)T + 37iT^{2} \) |
| 41 | \( 1 + (5.66 + 5.66i)T + 41iT^{2} \) |
| 43 | \( 1 + 5.44iT - 43T^{2} \) |
| 47 | \( 1 + (3.80 - 3.80i)T - 47iT^{2} \) |
| 53 | \( 1 + 2.40iT - 53T^{2} \) |
| 59 | \( 1 + (-10.5 + 10.5i)T - 59iT^{2} \) |
| 61 | \( 1 - 5.20T + 61T^{2} \) |
| 67 | \( 1 + (7.77 - 7.77i)T - 67iT^{2} \) |
| 71 | \( 1 + (-5.74 - 5.74i)T + 71iT^{2} \) |
| 73 | \( 1 + (4.15 + 4.15i)T + 73iT^{2} \) |
| 79 | \( 1 + 9.23T + 79T^{2} \) |
| 83 | \( 1 + (-3.87 - 3.87i)T + 83iT^{2} \) |
| 89 | \( 1 + (4.74 - 4.74i)T - 89iT^{2} \) |
| 97 | \( 1 + (-9.51 + 9.51i)T - 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.79335784014789587842440643467, −10.85457489612557906339038093817, −10.10401671337580393403053716946, −8.746530802922495783151830963178, −8.161864054583795244606909356675, −6.99182765175052658114201094777, −5.64329239206736131494148710773, −3.55023375978474041488377151234, −2.04353890957573889150545915603, −0.43618267494876684700614933845,
3.18606193244094713909911639895, 4.75409603748328533071436047278, 6.21902975060054123238967267703, 6.91346975528004135090635891378, 8.540520894719544399377714677074, 8.869847865969329650268193588979, 9.937419314929480660297341496524, 10.86890140398433205964112135247, 11.84617499752503953681844574833, 13.28904611545874798893303101842