L(s) = 1 | + (1.57 + 1.57i)2-s + (1.73 + 0.0822i)3-s + 2.98i·4-s + (−0.707 − 0.707i)5-s + (2.60 + 2.86i)6-s + (−2.29 − 2.29i)7-s + (−1.56 + 1.56i)8-s + (2.98 + 0.284i)9-s − 2.23i·10-s + (−3.85 + 3.85i)11-s + (−0.245 + 5.16i)12-s + (−0.766 − 3.52i)13-s − 7.24i·14-s + (−1.16 − 1.28i)15-s + 1.04·16-s − 3.78·17-s + ⋯ |
L(s) = 1 | + (1.11 + 1.11i)2-s + (0.998 + 0.0474i)3-s + 1.49i·4-s + (−0.316 − 0.316i)5-s + (1.06 + 1.16i)6-s + (−0.866 − 0.866i)7-s + (−0.551 + 0.551i)8-s + (0.995 + 0.0948i)9-s − 0.706i·10-s + (−1.16 + 1.16i)11-s + (−0.0709 + 1.49i)12-s + (−0.212 − 0.977i)13-s − 1.93i·14-s + (−0.300 − 0.330i)15-s + 0.261·16-s − 0.917·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 195 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.319 - 0.947i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 195 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.319 - 0.947i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.89577 + 1.36208i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.89577 + 1.36208i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (-1.73 - 0.0822i)T \) |
| 5 | \( 1 + (0.707 + 0.707i)T \) |
| 13 | \( 1 + (0.766 + 3.52i)T \) |
good | 2 | \( 1 + (-1.57 - 1.57i)T + 2iT^{2} \) |
| 7 | \( 1 + (2.29 + 2.29i)T + 7iT^{2} \) |
| 11 | \( 1 + (3.85 - 3.85i)T - 11iT^{2} \) |
| 17 | \( 1 + 3.78T + 17T^{2} \) |
| 19 | \( 1 + (1.28 - 1.28i)T - 19iT^{2} \) |
| 23 | \( 1 - 5.74T + 23T^{2} \) |
| 29 | \( 1 + 5.42iT - 29T^{2} \) |
| 31 | \( 1 + (3.95 - 3.95i)T - 31iT^{2} \) |
| 37 | \( 1 + (-6.99 - 6.99i)T + 37iT^{2} \) |
| 41 | \( 1 + (0.872 + 0.872i)T + 41iT^{2} \) |
| 43 | \( 1 - 4.18iT - 43T^{2} \) |
| 47 | \( 1 + (-1.56 + 1.56i)T - 47iT^{2} \) |
| 53 | \( 1 + 1.55iT - 53T^{2} \) |
| 59 | \( 1 + (-4.00 + 4.00i)T - 59iT^{2} \) |
| 61 | \( 1 + 2.47T + 61T^{2} \) |
| 67 | \( 1 + (-5.37 + 5.37i)T - 67iT^{2} \) |
| 71 | \( 1 + (1.46 + 1.46i)T + 71iT^{2} \) |
| 73 | \( 1 + (5.34 + 5.34i)T + 73iT^{2} \) |
| 79 | \( 1 + 4.01T + 79T^{2} \) |
| 83 | \( 1 + (3.77 + 3.77i)T + 83iT^{2} \) |
| 89 | \( 1 + (4.28 - 4.28i)T - 89iT^{2} \) |
| 97 | \( 1 + (12.3 - 12.3i)T - 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−13.10730527894677912371212028119, −12.54763406665325950365119241555, −10.53750701438844024577161929528, −9.671483611915737630019249142145, −8.180349639925303447974388430020, −7.45355457223315784580283965963, −6.68052408427726847286842805010, −5.04050613182506521511301621614, −4.16987285180385074538004517521, −2.95492634407199452662433220458,
2.41377031387547969839910191874, 3.06608224131476190695808706070, 4.25652649925293724794321780986, 5.66224295409794872791014103046, 7.06661085516591694387067564466, 8.572591727068674593376778583589, 9.421200964010217417070986922289, 10.70763863339012886127381529833, 11.38990090106024353683879816700, 12.70437190812545083433206608330