L(s) = 1 | + (1.11 + 1.11i)2-s + (0.455 − 1.67i)3-s + 0.503i·4-s + (−0.707 − 0.707i)5-s + (2.37 − 1.36i)6-s + (1.46 + 1.46i)7-s + (1.67 − 1.67i)8-s + (−2.58 − 1.52i)9-s − 1.58i·10-s + (−0.292 + 0.292i)11-s + (0.841 + 0.229i)12-s + (2.19 + 2.86i)13-s + 3.28i·14-s + (−1.50 + 0.859i)15-s + 4.75·16-s − 2.78·17-s + ⋯ |
L(s) = 1 | + (0.791 + 0.791i)2-s + (0.262 − 0.964i)3-s + 0.251i·4-s + (−0.316 − 0.316i)5-s + (0.971 − 0.555i)6-s + (0.554 + 0.554i)7-s + (0.591 − 0.591i)8-s + (−0.861 − 0.507i)9-s − 0.500i·10-s + (−0.0883 + 0.0883i)11-s + (0.242 + 0.0661i)12-s + (0.608 + 0.793i)13-s + 0.876i·14-s + (−0.388 + 0.221i)15-s + 1.18·16-s − 0.674·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 195 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.994 + 0.103i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 195 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.994 + 0.103i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.84044 - 0.0956351i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.84044 - 0.0956351i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (-0.455 + 1.67i)T \) |
| 5 | \( 1 + (0.707 + 0.707i)T \) |
| 13 | \( 1 + (-2.19 - 2.86i)T \) |
good | 2 | \( 1 + (-1.11 - 1.11i)T + 2iT^{2} \) |
| 7 | \( 1 + (-1.46 - 1.46i)T + 7iT^{2} \) |
| 11 | \( 1 + (0.292 - 0.292i)T - 11iT^{2} \) |
| 17 | \( 1 + 2.78T + 17T^{2} \) |
| 19 | \( 1 + (1.21 - 1.21i)T - 19iT^{2} \) |
| 23 | \( 1 + 5.66T + 23T^{2} \) |
| 29 | \( 1 - 7.34iT - 29T^{2} \) |
| 31 | \( 1 + (1.98 - 1.98i)T - 31iT^{2} \) |
| 37 | \( 1 + (3.02 + 3.02i)T + 37iT^{2} \) |
| 41 | \( 1 + (-3.08 - 3.08i)T + 41iT^{2} \) |
| 43 | \( 1 - 0.831iT - 43T^{2} \) |
| 47 | \( 1 + (-8.76 + 8.76i)T - 47iT^{2} \) |
| 53 | \( 1 - 0.258iT - 53T^{2} \) |
| 59 | \( 1 + (2.38 - 2.38i)T - 59iT^{2} \) |
| 61 | \( 1 + 3.66T + 61T^{2} \) |
| 67 | \( 1 + (-9.29 + 9.29i)T - 67iT^{2} \) |
| 71 | \( 1 + (-7.88 - 7.88i)T + 71iT^{2} \) |
| 73 | \( 1 + (11.5 + 11.5i)T + 73iT^{2} \) |
| 79 | \( 1 - 16.3T + 79T^{2} \) |
| 83 | \( 1 + (10.1 + 10.1i)T + 83iT^{2} \) |
| 89 | \( 1 + (4.97 - 4.97i)T - 89iT^{2} \) |
| 97 | \( 1 + (8.41 - 8.41i)T - 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.66080695265832179122877635699, −11.92564011180330881608102575638, −10.78694455360575079127738802396, −9.089634476396833869076689264642, −8.227793685794382095390922045543, −7.16375828526980492300220574851, −6.25498763889650057906814241753, −5.23086545017406188587400885264, −3.89963085013348978113903934334, −1.80031461742363514737154776835,
2.51096536283822442897808805784, 3.80998367616223847041837639525, 4.46113621801994623143053603351, 5.78729912352326129251611666067, 7.69857107299788812027064857348, 8.468770665312453918670338141352, 9.970414480131109065006938262110, 10.92240219721066076886093563095, 11.26448243697573374178714462413, 12.47158039694902370121716271729