L(s) = 1 | + 1.97i·2-s + (−0.707 + 0.707i)3-s − 1.88·4-s + (0.644 + 2.14i)5-s + (−1.39 − 1.39i)6-s − 0.616·7-s + 0.222i·8-s − 1.00i·9-s + (−4.22 + 1.27i)10-s + (1.14 − 1.14i)11-s + (1.33 − 1.33i)12-s + (−3.56 + 0.554i)13-s − 1.21i·14-s + (−1.96 − 1.05i)15-s − 4.21·16-s + (0.816 − 0.816i)17-s + ⋯ |
L(s) = 1 | + 1.39i·2-s + (−0.408 + 0.408i)3-s − 0.943·4-s + (0.288 + 0.957i)5-s + (−0.569 − 0.569i)6-s − 0.233·7-s + 0.0786i·8-s − 0.333i·9-s + (−1.33 + 0.401i)10-s + (0.344 − 0.344i)11-s + (0.385 − 0.385i)12-s + (−0.988 + 0.153i)13-s − 0.324i·14-s + (−0.508 − 0.273i)15-s − 1.05·16-s + (0.197 − 0.197i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 195 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.996 - 0.0788i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 195 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.996 - 0.0788i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.0401761 + 1.01751i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.0401761 + 1.01751i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (0.707 - 0.707i)T \) |
| 5 | \( 1 + (-0.644 - 2.14i)T \) |
| 13 | \( 1 + (3.56 - 0.554i)T \) |
good | 2 | \( 1 - 1.97iT - 2T^{2} \) |
| 7 | \( 1 + 0.616T + 7T^{2} \) |
| 11 | \( 1 + (-1.14 + 1.14i)T - 11iT^{2} \) |
| 17 | \( 1 + (-0.816 + 0.816i)T - 17iT^{2} \) |
| 19 | \( 1 + (-4.26 + 4.26i)T - 19iT^{2} \) |
| 23 | \( 1 + (-5.27 - 5.27i)T + 23iT^{2} \) |
| 29 | \( 1 - 2.25iT - 29T^{2} \) |
| 31 | \( 1 + (-4.04 - 4.04i)T + 31iT^{2} \) |
| 37 | \( 1 - 3.21T + 37T^{2} \) |
| 41 | \( 1 + (1.89 + 1.89i)T + 41iT^{2} \) |
| 43 | \( 1 + (-0.687 - 0.687i)T + 43iT^{2} \) |
| 47 | \( 1 - 9.07T + 47T^{2} \) |
| 53 | \( 1 + (2.76 - 2.76i)T - 53iT^{2} \) |
| 59 | \( 1 + (-4.05 - 4.05i)T + 59iT^{2} \) |
| 61 | \( 1 - 12.5T + 61T^{2} \) |
| 67 | \( 1 - 1.67iT - 67T^{2} \) |
| 71 | \( 1 + (2.76 + 2.76i)T + 71iT^{2} \) |
| 73 | \( 1 + 15.5iT - 73T^{2} \) |
| 79 | \( 1 + 15.4iT - 79T^{2} \) |
| 83 | \( 1 + 4.88T + 83T^{2} \) |
| 89 | \( 1 + (7.34 + 7.34i)T + 89iT^{2} \) |
| 97 | \( 1 + 13.3iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−13.41569364893745788403602741367, −11.82396409217152499703964364053, −11.04432735286369182731813587992, −9.813067601125124296534921159384, −8.989584706694201457562499268518, −7.41290080645209707574843527222, −6.89904804131304136987786564281, −5.80404538860245325626130573291, −4.87444191074330832373515751423, −3.03439988815320719715564329329,
1.01918452892204078667525538076, 2.48761622512002871070396476513, 4.18584179744792287658291738467, 5.36098767823339269254307741776, 6.80349180814337634996564495347, 8.196872030337067044294917975403, 9.563767811801425759710218482602, 10.01092661917265398431587089639, 11.29176979525149829767629035729, 12.17003050566015239897186745895