L(s) = 1 | + 1.58i·2-s + (0.707 − 0.707i)3-s − 0.498·4-s + (−1.18 + 1.89i)5-s + (1.11 + 1.11i)6-s + 0.974·7-s + 2.37i·8-s − 1.00i·9-s + (−2.99 − 1.87i)10-s + (−0.601 + 0.601i)11-s + (−0.352 + 0.352i)12-s + (3.34 + 1.34i)13-s + 1.54i·14-s + (0.502 + 2.17i)15-s − 4.74·16-s + (1.16 − 1.16i)17-s + ⋯ |
L(s) = 1 | + 1.11i·2-s + (0.408 − 0.408i)3-s − 0.249·4-s + (−0.530 + 0.847i)5-s + (0.456 + 0.456i)6-s + 0.368·7-s + 0.839i·8-s − 0.333i·9-s + (−0.947 − 0.592i)10-s + (−0.181 + 0.181i)11-s + (−0.101 + 0.101i)12-s + (0.927 + 0.373i)13-s + 0.411i·14-s + (0.129 + 0.562i)15-s − 1.18·16-s + (0.282 − 0.282i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 195 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.102 - 0.994i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 195 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.102 - 0.994i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.915942 + 1.01558i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.915942 + 1.01558i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (-0.707 + 0.707i)T \) |
| 5 | \( 1 + (1.18 - 1.89i)T \) |
| 13 | \( 1 + (-3.34 - 1.34i)T \) |
good | 2 | \( 1 - 1.58iT - 2T^{2} \) |
| 7 | \( 1 - 0.974T + 7T^{2} \) |
| 11 | \( 1 + (0.601 - 0.601i)T - 11iT^{2} \) |
| 17 | \( 1 + (-1.16 + 1.16i)T - 17iT^{2} \) |
| 19 | \( 1 + (-0.691 + 0.691i)T - 19iT^{2} \) |
| 23 | \( 1 + (1.66 + 1.66i)T + 23iT^{2} \) |
| 29 | \( 1 + 6.37iT - 29T^{2} \) |
| 31 | \( 1 + (7.57 + 7.57i)T + 31iT^{2} \) |
| 37 | \( 1 - 7.22T + 37T^{2} \) |
| 41 | \( 1 + (-3.65 - 3.65i)T + 41iT^{2} \) |
| 43 | \( 1 + (-2.71 - 2.71i)T + 43iT^{2} \) |
| 47 | \( 1 - 3.25T + 47T^{2} \) |
| 53 | \( 1 + (-5.65 + 5.65i)T - 53iT^{2} \) |
| 59 | \( 1 + (5.91 + 5.91i)T + 59iT^{2} \) |
| 61 | \( 1 - 2.69T + 61T^{2} \) |
| 67 | \( 1 + 6.40iT - 67T^{2} \) |
| 71 | \( 1 + (-7.17 - 7.17i)T + 71iT^{2} \) |
| 73 | \( 1 - 10.2iT - 73T^{2} \) |
| 79 | \( 1 - 7.43iT - 79T^{2} \) |
| 83 | \( 1 + 14.2T + 83T^{2} \) |
| 89 | \( 1 + (10.6 + 10.6i)T + 89iT^{2} \) |
| 97 | \( 1 - 14.4iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−13.03735498412087671257531542058, −11.57269629222331617765088162183, −11.10140746981766235820265162826, −9.556300945350815735684291445846, −8.199725216166900990955637354666, −7.68854856360945466631744561996, −6.71204269449770043139731901741, −5.81626281933263534474272241014, −4.11042580030152505151970825078, −2.43737511344949467732538455876,
1.43553267264269678778624167399, 3.24455066430989424921162052613, 4.18106848078363606491202292338, 5.57259429978683466572914578541, 7.40726284113735424826031043304, 8.530461468891344411279042778457, 9.332207092377656513260282223796, 10.57394206408132385706243764881, 11.14567676935699379925531697825, 12.24046542546171122829000392906