| L(s) = 1 | + (−0.283 − 1.05i)2-s + (0.872 + 1.49i)3-s + (0.689 − 0.397i)4-s + (1.65 + 1.50i)5-s + (1.33 − 1.34i)6-s + (−0.0430 + 0.160i)7-s + (−2.16 − 2.16i)8-s + (−1.47 + 2.61i)9-s + (1.12 − 2.17i)10-s + (−2.43 + 4.22i)11-s + (1.19 + 0.684i)12-s + (2.82 − 2.24i)13-s + 0.182·14-s + (−0.813 + 3.78i)15-s + (−0.887 + 1.53i)16-s + (1.24 − 4.65i)17-s + ⋯ |
| L(s) = 1 | + (−0.200 − 0.749i)2-s + (0.503 + 0.863i)3-s + (0.344 − 0.198i)4-s + (0.738 + 0.674i)5-s + (0.546 − 0.551i)6-s + (−0.0162 + 0.0606i)7-s + (−0.766 − 0.766i)8-s + (−0.492 + 0.870i)9-s + (0.356 − 0.688i)10-s + (−0.734 + 1.27i)11-s + (0.345 + 0.197i)12-s + (0.782 − 0.622i)13-s + 0.0487·14-s + (−0.210 + 0.977i)15-s + (−0.221 + 0.384i)16-s + (0.302 − 1.13i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 195 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.996 + 0.0803i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 195 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.996 + 0.0803i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(1.45243 - 0.0584749i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.45243 - 0.0584749i\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 3 | \( 1 + (-0.872 - 1.49i)T \) |
| 5 | \( 1 + (-1.65 - 1.50i)T \) |
| 13 | \( 1 + (-2.82 + 2.24i)T \) |
| good | 2 | \( 1 + (0.283 + 1.05i)T + (-1.73 + i)T^{2} \) |
| 7 | \( 1 + (0.0430 - 0.160i)T + (-6.06 - 3.5i)T^{2} \) |
| 11 | \( 1 + (2.43 - 4.22i)T + (-5.5 - 9.52i)T^{2} \) |
| 17 | \( 1 + (-1.24 + 4.65i)T + (-14.7 - 8.5i)T^{2} \) |
| 19 | \( 1 + (1.37 + 2.37i)T + (-9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (1.51 + 5.64i)T + (-19.9 + 11.5i)T^{2} \) |
| 29 | \( 1 + (-2.47 + 4.28i)T + (-14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 - 2.41iT - 31T^{2} \) |
| 37 | \( 1 + (4.48 - 1.20i)T + (32.0 - 18.5i)T^{2} \) |
| 41 | \( 1 + (2.16 - 3.74i)T + (-20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (0.340 - 1.27i)T + (-37.2 - 21.5i)T^{2} \) |
| 47 | \( 1 + (-3.58 + 3.58i)T - 47iT^{2} \) |
| 53 | \( 1 + (3.34 - 3.34i)T - 53iT^{2} \) |
| 59 | \( 1 + (8.49 - 4.90i)T + (29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (7.20 + 12.4i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (0.702 - 0.188i)T + (58.0 - 33.5i)T^{2} \) |
| 71 | \( 1 + (1.37 + 2.38i)T + (-35.5 + 61.4i)T^{2} \) |
| 73 | \( 1 + (5.45 - 5.45i)T - 73iT^{2} \) |
| 79 | \( 1 - 7.39iT - 79T^{2} \) |
| 83 | \( 1 + (1.60 + 1.60i)T + 83iT^{2} \) |
| 89 | \( 1 + (-5.98 - 3.45i)T + (44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + (-4.36 + 16.2i)T + (-84.0 - 48.5i)T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.36763002248882281996912052244, −11.13401161018875490035986175677, −10.35398251288212420613180392226, −9.941639285161036060369155453054, −8.922079292801527751055763697028, −7.43653566717210340868230472621, −6.16541417197240884533476370694, −4.82685672139763895145786464792, −3.09802830784046390491220063675, −2.26918789880476658397366233644,
1.76922169502104022419159865143, 3.39389197378025695125000420211, 5.74321725223739388083185182535, 6.18713339274416726897744213252, 7.52944981894079012279171674206, 8.472114247724945025799834498109, 8.922067192088285034165321199005, 10.55400749771768097974149472894, 11.76168116072437820182351363499, 12.68811729652318509111399026582