L(s) = 1 | + (1.65 − 0.442i)2-s + (−0.744 − 1.56i)3-s + (0.796 − 0.459i)4-s + (0.908 − 2.04i)5-s + (−1.92 − 2.25i)6-s + (0.109 + 0.0293i)7-s + (−1.30 + 1.30i)8-s + (−1.89 + 2.32i)9-s + (0.595 − 3.77i)10-s + (2.05 − 3.55i)11-s + (−1.31 − 0.902i)12-s + (3.24 + 1.57i)13-s + 0.193·14-s + (−3.87 + 0.100i)15-s + (−2.49 + 4.32i)16-s + (−5.04 − 1.35i)17-s + ⋯ |
L(s) = 1 | + (1.16 − 0.312i)2-s + (−0.429 − 0.902i)3-s + (0.398 − 0.229i)4-s + (0.406 − 0.913i)5-s + (−0.783 − 0.919i)6-s + (0.0413 + 0.0110i)7-s + (−0.461 + 0.461i)8-s + (−0.630 + 0.776i)9-s + (0.188 − 1.19i)10-s + (0.619 − 1.07i)11-s + (−0.378 − 0.260i)12-s + (0.900 + 0.435i)13-s + 0.0517·14-s + (−0.999 + 0.0259i)15-s + (−0.624 + 1.08i)16-s + (−1.22 − 0.327i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 195 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.140 + 0.990i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 195 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.140 + 0.990i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.37146 - 1.19016i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.37146 - 1.19016i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (0.744 + 1.56i)T \) |
| 5 | \( 1 + (-0.908 + 2.04i)T \) |
| 13 | \( 1 + (-3.24 - 1.57i)T \) |
good | 2 | \( 1 + (-1.65 + 0.442i)T + (1.73 - i)T^{2} \) |
| 7 | \( 1 + (-0.109 - 0.0293i)T + (6.06 + 3.5i)T^{2} \) |
| 11 | \( 1 + (-2.05 + 3.55i)T + (-5.5 - 9.52i)T^{2} \) |
| 17 | \( 1 + (5.04 + 1.35i)T + (14.7 + 8.5i)T^{2} \) |
| 19 | \( 1 + (-3.97 - 6.88i)T + (-9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (-6.69 + 1.79i)T + (19.9 - 11.5i)T^{2} \) |
| 29 | \( 1 + (2.00 - 3.48i)T + (-14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 - 6.89iT - 31T^{2} \) |
| 37 | \( 1 + (1.09 + 4.10i)T + (-32.0 + 18.5i)T^{2} \) |
| 41 | \( 1 + (1.73 - 3.01i)T + (-20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (4.88 + 1.30i)T + (37.2 + 21.5i)T^{2} \) |
| 47 | \( 1 + (0.185 + 0.185i)T + 47iT^{2} \) |
| 53 | \( 1 + (1.94 + 1.94i)T + 53iT^{2} \) |
| 59 | \( 1 + (0.619 - 0.357i)T + (29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (-2.04 - 3.53i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (0.764 + 2.85i)T + (-58.0 + 33.5i)T^{2} \) |
| 71 | \( 1 + (4.25 + 7.36i)T + (-35.5 + 61.4i)T^{2} \) |
| 73 | \( 1 + (3.00 + 3.00i)T + 73iT^{2} \) |
| 79 | \( 1 - 4.84iT - 79T^{2} \) |
| 83 | \( 1 + (-2.04 + 2.04i)T - 83iT^{2} \) |
| 89 | \( 1 + (-2.79 - 1.61i)T + (44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + (-0.144 - 0.0386i)T + (84.0 + 48.5i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.44225613186985197860582320796, −11.66060073070620272404361897633, −10.91722780950406204893151021330, −8.993234654022252951401595161925, −8.409849019391239362116571326367, −6.65193938024845476920193204051, −5.76949783042043710395568916508, −4.88070717969131496248375585512, −3.39747572671991804981409653456, −1.53971659223445429276964980258,
3.01785561299260260069446014100, 4.18997422398252507858364205258, 5.17328767197859174566792570363, 6.29250367053733083922459570679, 7.00979723088526560287525352889, 9.107721931175692747754787325021, 9.780440878996605878686961491267, 11.05946177430550722335425430870, 11.60536081635396021651528758059, 13.07110934681256180564141775780