L(s) = 1 | + (−0.521 + 0.301i)2-s + (−0.866 + 0.5i)3-s + (−0.818 + 1.41i)4-s + (0.446 + 2.19i)5-s + (0.301 − 0.521i)6-s + (−3.08 − 1.77i)7-s − 2.18i·8-s + (0.499 − 0.866i)9-s + (−0.892 − 1.00i)10-s + (−1.30 − 2.26i)11-s − 1.63i·12-s + (−2.88 + 2.16i)13-s + 2.14·14-s + (−1.48 − 1.67i)15-s + (−0.978 − 1.69i)16-s + (1.94 + 1.12i)17-s + ⋯ |
L(s) = 1 | + (−0.368 + 0.212i)2-s + (−0.499 + 0.288i)3-s + (−0.409 + 0.709i)4-s + (0.199 + 0.979i)5-s + (0.122 − 0.212i)6-s + (−1.16 − 0.672i)7-s − 0.774i·8-s + (0.166 − 0.288i)9-s + (−0.282 − 0.318i)10-s + (−0.394 − 0.682i)11-s − 0.472i·12-s + (−0.800 + 0.599i)13-s + 0.572·14-s + (−0.382 − 0.432i)15-s + (−0.244 − 0.423i)16-s + (0.471 + 0.272i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 195 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.997 + 0.0647i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 195 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.997 + 0.0647i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.0108233 - 0.333718i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.0108233 - 0.333718i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (0.866 - 0.5i)T \) |
| 5 | \( 1 + (-0.446 - 2.19i)T \) |
| 13 | \( 1 + (2.88 - 2.16i)T \) |
good | 2 | \( 1 + (0.521 - 0.301i)T + (1 - 1.73i)T^{2} \) |
| 7 | \( 1 + (3.08 + 1.77i)T + (3.5 + 6.06i)T^{2} \) |
| 11 | \( 1 + (1.30 + 2.26i)T + (-5.5 + 9.52i)T^{2} \) |
| 17 | \( 1 + (-1.94 - 1.12i)T + (8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (4.00 - 6.94i)T + (-9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (-1.43 + 0.826i)T + (11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (-2.26 - 3.91i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + 4.05T + 31T^{2} \) |
| 37 | \( 1 + (-3.64 + 2.10i)T + (18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + (-0.388 - 0.673i)T + (-20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (-0.197 - 0.113i)T + (21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 - 3.14iT - 47T^{2} \) |
| 53 | \( 1 - 6.42iT - 53T^{2} \) |
| 59 | \( 1 + (6.26 - 10.8i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (1.46 - 2.53i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (0.969 - 0.559i)T + (33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + (-5.66 + 9.81i)T + (-35.5 - 61.4i)T^{2} \) |
| 73 | \( 1 - 12.4iT - 73T^{2} \) |
| 79 | \( 1 - 14.8T + 79T^{2} \) |
| 83 | \( 1 + 11.7iT - 83T^{2} \) |
| 89 | \( 1 + (8.60 + 14.9i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + (10.6 + 6.12i)T + (48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.89267108028136356282127616528, −12.14558191060167695234807742541, −10.73531134856330569872421048274, −10.11614356537314241858147278104, −9.216930869112527871644387120803, −7.79908470592780523933106350816, −6.88538329244344037066788061340, −5.96734154249175011002197359868, −4.10546336517638567006018251433, −3.13352694602219763492709519297,
0.33705533836138487571464624335, 2.35879034994240260085738238123, 4.76784221095144544975350770783, 5.49794609109358341529124375449, 6.64941103304217496058691379288, 8.161243730477993579804454283075, 9.394532417816689495660484335756, 9.735052884202063253991724787971, 10.92700336881928926427061662862, 12.21092349435531773036346115692