L(s) = 1 | + (−1.16 + 0.672i)2-s + (0.866 − 0.5i)3-s + (−0.0962 + 0.166i)4-s + (−0.868 − 2.06i)5-s + (−0.672 + 1.16i)6-s + (−3.39 − 1.96i)7-s − 2.94i·8-s + (0.499 − 0.866i)9-s + (2.39 + 1.81i)10-s + (−1.37 − 2.38i)11-s + 0.192i·12-s + (1.14 + 3.41i)13-s + 5.27·14-s + (−1.78 − 1.35i)15-s + (1.78 + 3.09i)16-s + (−4.09 − 2.36i)17-s + ⋯ |
L(s) = 1 | + (−0.823 + 0.475i)2-s + (0.499 − 0.288i)3-s + (−0.0481 + 0.0833i)4-s + (−0.388 − 0.921i)5-s + (−0.274 + 0.475i)6-s + (−1.28 − 0.741i)7-s − 1.04i·8-s + (0.166 − 0.288i)9-s + (0.757 + 0.574i)10-s + (−0.414 − 0.718i)11-s + 0.0555i·12-s + (0.318 + 0.947i)13-s + 1.40·14-s + (−0.460 − 0.348i)15-s + (0.447 + 0.774i)16-s + (−0.992 − 0.573i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 195 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.0562 + 0.998i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 195 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.0562 + 0.998i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.357242 - 0.377920i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.357242 - 0.377920i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (-0.866 + 0.5i)T \) |
| 5 | \( 1 + (0.868 + 2.06i)T \) |
| 13 | \( 1 + (-1.14 - 3.41i)T \) |
good | 2 | \( 1 + (1.16 - 0.672i)T + (1 - 1.73i)T^{2} \) |
| 7 | \( 1 + (3.39 + 1.96i)T + (3.5 + 6.06i)T^{2} \) |
| 11 | \( 1 + (1.37 + 2.38i)T + (-5.5 + 9.52i)T^{2} \) |
| 17 | \( 1 + (4.09 + 2.36i)T + (8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (-1.85 + 3.20i)T + (-9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (-4.57 + 2.64i)T + (11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (1.31 + 2.27i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 - 4.71T + 31T^{2} \) |
| 37 | \( 1 + (3.66 - 2.11i)T + (18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + (0.408 + 0.708i)T + (-20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (4.85 + 2.80i)T + (21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 - 8.36iT - 47T^{2} \) |
| 53 | \( 1 - 7.01iT - 53T^{2} \) |
| 59 | \( 1 + (-1.09 + 1.89i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (-6.41 + 11.1i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (-10.8 + 6.28i)T + (33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + (6.08 - 10.5i)T + (-35.5 - 61.4i)T^{2} \) |
| 73 | \( 1 + 0.955iT - 73T^{2} \) |
| 79 | \( 1 - 11.1T + 79T^{2} \) |
| 83 | \( 1 + 11.7iT - 83T^{2} \) |
| 89 | \( 1 + (5.60 + 9.70i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + (-1.52 - 0.882i)T + (48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.51946756268296751599721750388, −11.21983512794192832427818687188, −9.775038257468935000099878812501, −9.067104557080566738893625853805, −8.394825027883290144969688384421, −7.22188381172126208689062288399, −6.52255167208677345393788536783, −4.48454816943196612805358250569, −3.27280263554655665597698558789, −0.55601591134372578737151110094,
2.41320646052629875953579623042, 3.47948158888854427688343089521, 5.40081948652558687486067958046, 6.72802911358997988751986074421, 8.022330744053985414683523784148, 8.962920223161357167781912217064, 9.969908313904892954348735549927, 10.40929921667142518422027357922, 11.50483157188593163382011329484, 12.70256121483893138325532827281