L(s) = 1 | + (−1.52 + 0.881i)2-s + (−0.866 + 0.5i)3-s + (0.553 − 0.959i)4-s + (1.52 − 1.63i)5-s + (0.881 − 1.52i)6-s + (1.92 + 1.11i)7-s − 1.57i·8-s + (0.499 − 0.866i)9-s + (−0.889 + 3.84i)10-s + (−0.646 − 1.11i)11-s + 1.10i·12-s + (2.90 + 2.14i)13-s − 3.92·14-s + (−0.504 + 2.17i)15-s + (2.49 + 4.32i)16-s + (5.27 + 3.04i)17-s + ⋯ |
L(s) = 1 | + (−1.07 + 0.623i)2-s + (−0.499 + 0.288i)3-s + (0.276 − 0.479i)4-s + (0.682 − 0.730i)5-s + (0.359 − 0.623i)6-s + (0.728 + 0.420i)7-s − 0.556i·8-s + (0.166 − 0.288i)9-s + (−0.281 + 1.21i)10-s + (−0.194 − 0.337i)11-s + 0.319i·12-s + (0.804 + 0.593i)13-s − 1.04·14-s + (−0.130 + 0.562i)15-s + (0.623 + 1.08i)16-s + (1.27 + 0.738i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 195 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.560 - 0.828i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 195 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.560 - 0.828i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.626085 + 0.332217i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.626085 + 0.332217i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (0.866 - 0.5i)T \) |
| 5 | \( 1 + (-1.52 + 1.63i)T \) |
| 13 | \( 1 + (-2.90 - 2.14i)T \) |
good | 2 | \( 1 + (1.52 - 0.881i)T + (1 - 1.73i)T^{2} \) |
| 7 | \( 1 + (-1.92 - 1.11i)T + (3.5 + 6.06i)T^{2} \) |
| 11 | \( 1 + (0.646 + 1.11i)T + (-5.5 + 9.52i)T^{2} \) |
| 17 | \( 1 + (-5.27 - 3.04i)T + (8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (2.01 - 3.49i)T + (-9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (3.29 - 1.90i)T + (11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (1.38 + 2.40i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 - 10.4T + 31T^{2} \) |
| 37 | \( 1 + (-6.77 + 3.91i)T + (18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + (-2.01 - 3.49i)T + (-20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (9.27 + 5.35i)T + (21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 - 1.00iT - 47T^{2} \) |
| 53 | \( 1 - 2.34iT - 53T^{2} \) |
| 59 | \( 1 + (-5.29 + 9.17i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (2.84 - 4.93i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (1.84 - 1.06i)T + (33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + (3.02 - 5.23i)T + (-35.5 - 61.4i)T^{2} \) |
| 73 | \( 1 + 3.10iT - 73T^{2} \) |
| 79 | \( 1 + 8.02T + 79T^{2} \) |
| 83 | \( 1 - 10.9iT - 83T^{2} \) |
| 89 | \( 1 + (0.387 + 0.670i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + (7.94 + 4.58i)T + (48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.53519767267359912725825851066, −11.59536768509386250476941199037, −10.28662182368813202923256491229, −9.654240818011706809516030210908, −8.470155414679327811619833535239, −8.051750437539948626025398787312, −6.32343541118274061681786342800, −5.62540522894253904228953605894, −4.10715310928544167539890598214, −1.40688086561026914557297832029,
1.23458754439027182049312997797, 2.74710718440517124458026236590, 4.96191570957772255817624299244, 6.17864245286595469274180127849, 7.49909261615548025323147299053, 8.365514433829121816620238062486, 9.766401479661464019879323141140, 10.36142382487938175731656829002, 11.13470143971291731343791755340, 11.89876297230137793115447563808