| L(s) = 1 | + (1.67 + 0.448i)2-s + (1.73 + 1.00i)4-s + (0.707 + 0.707i)7-s + (1.22 + 1.22i)8-s + (−0.866 + 0.5i)9-s + (0.5 − 0.866i)11-s + (0.707 − 0.707i)13-s + (0.866 + 1.5i)14-s + (0.500 + 0.866i)16-s + (−1.93 + 0.517i)17-s + (−1.67 + 0.448i)18-s + (1.22 − 1.22i)22-s + (1.5 − 0.866i)26-s + (0.517 + 1.93i)28-s + (−1.5 − 0.866i)31-s + ⋯ |
| L(s) = 1 | + (1.67 + 0.448i)2-s + (1.73 + 1.00i)4-s + (0.707 + 0.707i)7-s + (1.22 + 1.22i)8-s + (−0.866 + 0.5i)9-s + (0.5 − 0.866i)11-s + (0.707 − 0.707i)13-s + (0.866 + 1.5i)14-s + (0.500 + 0.866i)16-s + (−1.93 + 0.517i)17-s + (−1.67 + 0.448i)18-s + (1.22 − 1.22i)22-s + (1.5 − 0.866i)26-s + (0.517 + 1.93i)28-s + (−1.5 − 0.866i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1925 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.635 - 0.772i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1925 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.635 - 0.772i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(2.971975326\) |
| \(L(\frac12)\) |
\(\approx\) |
\(2.971975326\) |
| \(L(1)\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 5 | \( 1 \) |
| 7 | \( 1 + (-0.707 - 0.707i)T \) |
| 11 | \( 1 + (-0.5 + 0.866i)T \) |
| good | 2 | \( 1 + (-1.67 - 0.448i)T + (0.866 + 0.5i)T^{2} \) |
| 3 | \( 1 + (0.866 - 0.5i)T^{2} \) |
| 13 | \( 1 + (-0.707 + 0.707i)T - iT^{2} \) |
| 17 | \( 1 + (1.93 - 0.517i)T + (0.866 - 0.5i)T^{2} \) |
| 19 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 23 | \( 1 + (0.866 + 0.5i)T^{2} \) |
| 29 | \( 1 + T^{2} \) |
| 31 | \( 1 + (1.5 + 0.866i)T + (0.5 + 0.866i)T^{2} \) |
| 37 | \( 1 + (-0.866 - 0.5i)T^{2} \) |
| 41 | \( 1 + T^{2} \) |
| 43 | \( 1 + (-1.22 - 1.22i)T + iT^{2} \) |
| 47 | \( 1 + (0.866 + 0.5i)T^{2} \) |
| 53 | \( 1 + (-0.866 + 0.5i)T^{2} \) |
| 59 | \( 1 + (-0.866 + 1.5i)T + (-0.5 - 0.866i)T^{2} \) |
| 61 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| 67 | \( 1 + (0.866 - 0.5i)T^{2} \) |
| 71 | \( 1 + T + T^{2} \) |
| 73 | \( 1 + (-0.258 - 0.965i)T + (-0.866 + 0.5i)T^{2} \) |
| 79 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| 83 | \( 1 + (0.707 - 0.707i)T - iT^{2} \) |
| 89 | \( 1 + (0.866 + 1.5i)T + (-0.5 + 0.866i)T^{2} \) |
| 97 | \( 1 - iT^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.183908707602577038118868620035, −8.503630509649949472000476129083, −7.88544092326504074486549241350, −6.78177233601868154119035476580, −5.86504675836584090930206336490, −5.69754289233737980978262323126, −4.66701824930478295777472328860, −3.88603043264046080313429175970, −2.90429332001443441581638697961, −2.05241525202785152831015242904,
1.63617700266161404225318005579, 2.51014234736039832204302109337, 3.77089606954649612671558263517, 4.22712424326536703263083496644, 5.00332464260445909467829663055, 5.89764800031116454216799108167, 6.79274121238127647448045190845, 7.19678908652664162937588123942, 8.695524394123927092815918709485, 9.175327442855281301291245746976