L(s) = 1 | + (−0.448 − 1.67i)2-s + (−1.73 + 1.00i)4-s + (−0.707 − 0.707i)7-s + (1.22 + 1.22i)8-s + (0.866 + 0.5i)9-s + (0.5 + 0.866i)11-s + (−0.707 + 0.707i)13-s + (−0.866 + 1.5i)14-s + (0.500 − 0.866i)16-s + (−0.517 + 1.93i)17-s + (0.448 − 1.67i)18-s + (1.22 − 1.22i)22-s + (1.5 + 0.866i)26-s + (1.93 + 0.517i)28-s + (−1.5 + 0.866i)31-s + ⋯ |
L(s) = 1 | + (−0.448 − 1.67i)2-s + (−1.73 + 1.00i)4-s + (−0.707 − 0.707i)7-s + (1.22 + 1.22i)8-s + (0.866 + 0.5i)9-s + (0.5 + 0.866i)11-s + (−0.707 + 0.707i)13-s + (−0.866 + 1.5i)14-s + (0.500 − 0.866i)16-s + (−0.517 + 1.93i)17-s + (0.448 − 1.67i)18-s + (1.22 − 1.22i)22-s + (1.5 + 0.866i)26-s + (1.93 + 0.517i)28-s + (−1.5 + 0.866i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1925 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.913 + 0.406i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1925 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.913 + 0.406i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.6181641734\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.6181641734\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 \) |
| 7 | \( 1 + (0.707 + 0.707i)T \) |
| 11 | \( 1 + (-0.5 - 0.866i)T \) |
good | 2 | \( 1 + (0.448 + 1.67i)T + (-0.866 + 0.5i)T^{2} \) |
| 3 | \( 1 + (-0.866 - 0.5i)T^{2} \) |
| 13 | \( 1 + (0.707 - 0.707i)T - iT^{2} \) |
| 17 | \( 1 + (0.517 - 1.93i)T + (-0.866 - 0.5i)T^{2} \) |
| 19 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 23 | \( 1 + (-0.866 + 0.5i)T^{2} \) |
| 29 | \( 1 + T^{2} \) |
| 31 | \( 1 + (1.5 - 0.866i)T + (0.5 - 0.866i)T^{2} \) |
| 37 | \( 1 + (0.866 - 0.5i)T^{2} \) |
| 41 | \( 1 + T^{2} \) |
| 43 | \( 1 + (-1.22 - 1.22i)T + iT^{2} \) |
| 47 | \( 1 + (-0.866 + 0.5i)T^{2} \) |
| 53 | \( 1 + (0.866 + 0.5i)T^{2} \) |
| 59 | \( 1 + (0.866 + 1.5i)T + (-0.5 + 0.866i)T^{2} \) |
| 61 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 67 | \( 1 + (-0.866 - 0.5i)T^{2} \) |
| 71 | \( 1 + T + T^{2} \) |
| 73 | \( 1 + (-0.965 - 0.258i)T + (0.866 + 0.5i)T^{2} \) |
| 79 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 83 | \( 1 + (-0.707 + 0.707i)T - iT^{2} \) |
| 89 | \( 1 + (-0.866 + 1.5i)T + (-0.5 - 0.866i)T^{2} \) |
| 97 | \( 1 - iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.501085603083802307169159318100, −9.057280300019180651263868291386, −7.929122506501476132857562165788, −7.13780790590018355690608776244, −6.31906503452416300923476944581, −4.68032784175806648077342614091, −4.16337630395247724794880871266, −3.43999277568273512221755746056, −2.09198253989485913297891970751, −1.50741628151191515651737671680,
0.54674873729983900660566487914, 2.63898555247045160710494623368, 3.86340273407370800647300586240, 4.99476091052162575593440720995, 5.67289087054551008007990953812, 6.38636380248564088786357510020, 7.17710923826551049445281781579, 7.57309841389758698710209534138, 8.721466838787421042024132664430, 9.331034259043737941524362827078